scholarly journals Neutralizing Antibodies Protect against Lethal Flavivirus Challenge but Allow for the Development of Active Humoral Immunity to a Nonstructural Virus Protein

1998 ◽  
Vol 72 (4) ◽  
pp. 3076-3081 ◽  
Author(s):  
Thomas R. Kreil ◽  
Elisabeth Maier ◽  
Sabine Fraiss ◽  
Martha M. Eibl

ABSTRACT Antibody-mediated neutralization of viruses has been extensively studied in vitro, but the precise mechanisms that account for antibody-mediated protection against viral infection in vivo still remain largely uncharacterized. The two points under discussion are antibodies conferring sterilizing immunity by neutralizing the virus inoculum or protection against the development of disease without complete inhibition of virus replication. For tick-borne encephalitis virus (TBEV), a flavivirus, transfer of neutralizing antibodies specific for envelope glycoprotein E protected mice from subsequent TBEV challenge. Nevertheless, short-term, low-level virus replication was detected in these mice. Furthermore, mice that were exposed to replicating but not to inactivated virus while passively protected developed active immunity to TBEV rechallenge. Despite the priming of TBEV-specific cytotoxic T cells, adoptive transfer of serum but not of T cells conferred immunity upon naive recipient mice. These transferred sera were not neutralizing and were predominantly specific for NS1, a nonstructural TBEV protein which is expressed in and on infected cells and which is also secreted from these cells. Results of these experiments showed that despite passive protection by neutralizing antibodies, limited virus replication occurs, indicating protection from disease rather than sterilizing immunity. The protective immunity induced by replicating virus is surprisingly not T-cell mediated but is due to antibodies against a nonstructural virus protein absent from the virion.

2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Shariq Mujib ◽  
Jun Liu ◽  
A. K. M. Nur-ur Rahman ◽  
Jordan A. Schwartz ◽  
Phil Bonner ◽  
...  

ABSTRACT Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro. We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS. IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and eradication of HIV-1 in infected humans remains uncertain. In this study, we tested the ability of bnAbs to directly recognize and eliminate primary human CD4 T cells infected with diverse HIV-1 strains representative of the global epidemic by antibody-dependent pathways. We also tested several combinations of bnAbs in our assays in order to maximize the clearance of infected cells. We show that the ability of bnAbs to identify and kill infected cells is highly variable and that only a few of them are able to exert this function. Our data will help guide the formulation of bnAbs to test in future human trials aimed at the development of a cure.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi122-vi122
Author(s):  
Virginia Laspidea ◽  
Montse Puigdelloses ◽  
Ignacio Iñigo-Marco ◽  
Marc Garcia-Moure ◽  
Iker Ausejo ◽  
...  

Abstract Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumor, being the leading cause of pediatric death caused by cancer. We previously showed that administration of the oncolytic virus Delta-24-RGD to DIPG murine models was safe and led to an increase in the median survival of these animals. However, not all the animals responded, underscoring the need to improve this therapy. In order to increase the antitumoral effect of the virus, we have engineered Delta-24-RGD with the costimulatory ligand 4-1BBL (Delta24-ACT). 4-1BB is a costimulatory receptor that promotes the survival and expansion of activated T cells, and the generation and maintenance of memory CD8+ T cells. In this project, we evaluated the oncolytic effect of Delta24-ACT and the antitumor immune response in DIPG murine models. In vitro, Delta24-ACT was able to infect and induce cell death in a dose-dependent manner in murine DIPG cell lines. In addition, Delta24-ACT was able to replicate in these tumor cells and to express viral proteins. Moreover, infected cells expressed 41BBL in their membranes. Delta24-ACT could induce immunogenic cell death due to an increased secretion of ATP and calreticulin translocation to the membrane of infected cells (in no-infected cells it located in the ER), DAMPs that can trigger the immune response activation. In vivo, Delta24-ACT demonstrated to be safe in all the tested doses and was able to induce a significant increase in the median survival of the treated animals. Moreover, long-term survivors display immunological memory. Delta24-ACT treatment led to antitumoral effect in DIPG murine cell lines in vitro. Of significance, we have demonstrated that in vivo administration of Delta24-ACT is safe and results in an enhanced antitumor effect. Future in vivo studies will explore the underlying immune mechanism of the virus.


2008 ◽  
Vol 89 (5) ◽  
pp. 1212-1219 ◽  
Author(s):  
Hai-Jun Xu ◽  
Zhang-Nv Yang ◽  
Jin-Fang Zhao ◽  
Cai-Hong Tian ◽  
Jun-Qing Ge ◽  
...  

Bombyx mori nucleopolyhedrovirus ORF56 (Bm56) is a baculovirus core gene that is highly conserved in all baculoviruses that have had their genomes sequenced to date. Its transcripts in BmNPV-infected cells could be detected from 12 h post-infection (p.i.) and the encoded protein could be detected at 16 h p.i. by using a polyclonal antibody against glutathione S-transferase–Bm56 fusion protein. Western blot analysis showed that Bm56 is a structural component of the occlusion-derived virus nucleocapsid. Subsequent confocal microscopy revealed that Bm56 was distributed in the outer nuclear membrane and the intranuclear region of infected cells. To investigate the role of Bm56 in virus replication, a Bm56-knockout bacmid of BmNPV was constructed via homologous recombination in Escherichia coli. The Bm56 deletion had no effect on budded virus (BV) production in cultured cells; however, the deletion affected occlusion-body morphogenesis. A larval bioassay demonstrated that the Bm56 deletion did not reduce infectivity, whereas it resulted in a 50 % lethal time that was 16–18 h longer than that of the wild-type bacmid at every dose used in this study. These results indicate that Bm56 facilitates efficient virus production in vivo; however, it is not essential for BV production in vitro.


1984 ◽  
Vol 160 (2) ◽  
pp. 552-563 ◽  
Author(s):  
A R Townsend ◽  
J J Skehel

Using genetically typed recombinant influenza A viruses that differ only in their genes for nucleoprotein, we have demonstrated that repeated stimulation in vitro of C57BL/6 spleen cells primed in vivo with E61-13-H17 (H3N2) virus results in the selection of a population of cytotoxic T lymphocytes (CTL) whose recognition of infected target cells maps to the gene for nucleoprotein of the 1968 virus. Influenza A viruses isolated between 1934 and 1979 fall into two groups defined by their ability to sensitize target cells for lysis by these CTL: 1934-1943 form one group (A/PR/8/34 related) and 1946-1979 form the second group (A/HK/8/68 related). These findings complement and extend our previous results with an isolated CTL clone with specificity for the 1934 nucleoprotein (27, 28). It is also shown that the same spleen cells derived from mice primed with E61-13-H17 virus in vivo, but maintained in identical conditions by stimulation with X31 virus (which differs from the former only in the origin of its gene for NP) in vitro, results in the selection of CTL that cross-react on target cells infected with A/PR/8/1934 (H1N1) or A/Aichi/1968 (H3N2). These results show that the influenza A virus gene for NP can play a role in selecting CTL with different specificities and implicate the NP molecule as a candidate for a target structure recognized by both subtype-directed and cross-reactive influenza A-specific cytotoxic T cells.


1978 ◽  
Vol 147 (4) ◽  
pp. 1236-1252 ◽  
Author(s):  
T J Braciale ◽  
K L Yap

This report examines the requirement for infectious virus in the induction of influenza virus-specific cytotoxic T cells. Infectious influenza virus was found to be highly efficient at generating both primary and secondary cytotoxic T-cell response in vivo. Inactivated influenza virus however, failed to stimulate a detectable cytotoxic T-cell response in vivo even at immunizing doses 10(5)-10(6)-fold higher than the minimum stimulatory dose of infectious virus. Likewise inactivated virus failed to sensitize target cells for T cell-mediated lysis in vitro but could stimulate a specific cytotoxic response from primed cells in vitro. Possible requirements for the induction of virus-specific cytotoxic T-cell responses are discussed in light of these observations and those of other investigators.


2002 ◽  
Vol 76 (21) ◽  
pp. 10776-10784 ◽  
Author(s):  
Bin Lu ◽  
Chien-Hui Ma ◽  
Robert Brazas ◽  
Hong Jin

ABSTRACT The phosphoprotein (P protein) of respiratory syncytial virus (RSV) is a key component of the viral RNA-dependent RNA polymerase complex. The protein is constitutively phosphorylated at the two clusters of serine residues (116, 117, and 119 [116/117/119] and 232 and 237 [232/237]). To examine the role of phosphorylation of the RSV P protein in virus replication, these five serine residues were altered to eliminate their phosphorylation potential, and the mutant proteins were analyzed for their functions with a minigenome assay. The reporter gene expression was reduced by 20% when all five phosphorylation sites were eliminated. Mutants with knockout mutations at two phosphorylation sites (S232A/S237A [PP2]) and at five phosphorylation sites (S116L/S117R/S119L/S232A/S237A [PP5]) were introduced into the infectious RSV A2 strain. Immunoprecipitation of 33Pi-labeled infected cells showed that P protein phosphorylation was reduced by 80% for rA2-PP2 and 95% for rA2-PP5. The interaction between the nucleocapsid (N) protein and P protein was reduced in rA2-PP2- and rA2-PP5-infected cells by 30 and 60%, respectively. Although the two recombinant viruses replicated well in Vero cells, rA2-PP2 and, to a greater extent, rA2-PP5, replicated poorly in HEp-2 cells. Virus budding from the infected HEp-2 cells was affected by dephosphorylation of P protein, because the majority of rA2-PP5 remained cell associated. In addition, rA2-PP5 was also more attenuated than rA2-PP2 in replication in the respiratory tracts of mice and cotton rats. Thus, our data suggest that although the major phosphorylation sites of RSV P protein are dispensable for virus replication in vitro, phosphorylation of P protein is required for efficient virus replication in vitro and in vivo.


Tumor Biology ◽  
2007 ◽  
Vol 28 (2) ◽  
pp. 70-76 ◽  
Author(s):  
Philip Savage ◽  
Maggie Millrain ◽  
Sofia Dimakou ◽  
Justin Stebbing ◽  
Julian Dyson

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiafeng Gao ◽  
Yi-Nan Zhang ◽  
Jingwen Cui ◽  
Jiatong Zhang ◽  
Yuexiang Ming ◽  
...  

Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) that mediate T-cell immune responses. Breast cancer is one of the most commonly diagnosed diseases and its mortality rate is higher than any other cancer in both humans and canines. Plantain polysaccharide (PLP), extracted from the whole plant of Plantago asiatica L., could promote the maturation of DCs. In this research, we found that PLP could upregulate the maturation of DCs both in vitro and in vivo. PLP-activated DCs could stimulate lymphocytes’ proliferation and differentiate naive T cells into cytotoxic T cells. Tumor antigen-specific lymphocyte responses were enhanced by PLP and CIPp canine breast tumor cells lysate-pulsed DCs, and PLP and CIPp-cell-lysate jointly stimulated DCs cocultured with lymphocytes having the great cytotoxicity on CIPp cells. In the 4T1 murine breast tumor model, PLP could control the size of breast tumors and improve immunity by recruiting DCs, macrophages, and CD4+ and CD8+ T cells in the tumor microenvironment. These results indicated that PLP could achieve immunotherapeutic effects and improve immunity in the breast tumor model.


Sign in / Sign up

Export Citation Format

Share Document