scholarly journals Effects of Mutations in Residues near the Active Site of Human Immunodeficiency Virus Type 1 Integrase on Specific Enzyme-Substrate Interactions

1998 ◽  
Vol 72 (6) ◽  
pp. 5046-5055 ◽  
Author(s):  
Jennifer L. Gerton ◽  
Sharron Ohgi ◽  
Mari Olsen ◽  
Joseph DeRisi ◽  
Patrick O. Brown

ABSTRACT The phylogenetically conserved catalytic core domain of human immunodeficiency virus type 1 (HIV-1) integrase contains elements necessary for specific recognition of viral and target DNA features. In order to identify specific amino acids that determine substrate specificity, we mutagenized phylogenetically conserved residues that were located in close proximity to the active-site residues in the crystal structure of the isolated catalytic core domain of HIV-1 integrase. Residues composing the phylogenetically conserved DD(35)E active-site motif were also mutagenized. Purified mutant proteins were evaluated for their ability to recognize the phylogenetically conserved CA/TG base pairs near the viral DNA ends and the unpaired dinucleotide at the 5′ end of the viral DNA, using disintegration substrates. Our findings suggest that specificity for the conserved A/T base pair depends on the active-site residue E152. The phenotype of IN(Q148L) suggested that Q148 may be involved in interactions with the 5′ dinucleotide of the viral DNA end. The activities of some of the proteins with mutations in residues in close proximity to the active-site aspartic and glutamic acids were salt sensitive, suggesting that these mutations disrupted interactions with DNA.

2005 ◽  
Vol 79 (4) ◽  
pp. 2493-2505 ◽  
Author(s):  
Richard Lu ◽  
Ana Limón ◽  
Hina Z. Ghory ◽  
Alan Engelman

ABSTRACT The catalytic core domain (CCD) of human immunodeficiency virus type 1 (HIV-1) integrase (IN) harbors the enzyme active site and binds viral and chromosomal DNA during integration. Thirty-five CCD mutant viruses were constructed, paying particular attention to conserved residues in the Phe139-Gln146 flexible loop and abutting Ser147-Val165 amphipathic alpha helix that were implicated from previous in vitro work as important for DNA binding. Defective viruses were typed as class I mutants (specifically blocked at integration) or pleiotropic class II mutants (additional particle assembly and/or reverse transcription defects). Whereas HIV-1P145A and HIV-1Q146K grew like the wild type, HIV-1N144K and HIV-1Q148L were class I mutants, reinforcing previous results that Gln-148 is important for DNA binding and uncovering for the first time an important role for Asn-144 in integration. HIV-1Q62K, HIV-1H67E, HIV-1N120K, and HIV-1N155K were also class I mutants, supporting findings that Gln-62 and Asn-120 interact with viral and target DNA, respectively, and suggesting similar integration-specific roles for His-67 and Asn-155. Although results from complementation analyses established that IN functions as a multimer, the interplay between active-site and CCD DNA binding functions was unknown. By using Vpr-IN complementation, we determined that the CCD protomer that catalyzes integration also preferentially binds to viral and target DNA. We additionally characterized E138K as an intramolecular suppressor of Gln-62 mutant virus and IN. The results of these analyses highlight conserved CCD residues that are important for HIV-1 replication and integration and define the relationship between DNA binding and catalysis that occurs during integration in vivo.


2015 ◽  
Vol 68 (12) ◽  
pp. 1871
Author(s):  
John H. Ryan ◽  
Karen E. Jarvis ◽  
Roger J. Mulder ◽  
Craig L. Francis ◽  
G. Paul Savage ◽  
...  

Fragment-based screening of human immunodeficiency virus type 1 (HIV) integrase revealed several aromatic carboxylic acid fragment hits, some of which bound weakly at the site on the HIV-integrase catalytic core domain that binds the lens epithelium-derived growth factor (LEDGF). Virtual screening of an internal database identified an analogue that bound with higher affinity and in an isomerised form to the LEDGF binding site. The starting lactone was stable in CDCl3; however, an unexpected isomerisation process occurred in [D6]DMSO to give the same isomer found in the LEDGF binding site. This hit led directly to a series of low-micromolar LEDGF inhibitors and, via a scaffold hop, to a series of allosteric binding site inhibitors.


1998 ◽  
Vol 72 (6) ◽  
pp. 4678-4685 ◽  
Author(s):  
Meenakshi Gaur ◽  
Andrew D. Leavitt

ABSTRACT The core domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) contains a D,D(35)E motif, named for the phylogenetically conserved glutamic acid and aspartic acid residues and the invariant 35 amino acid spacing between the second and third acidic residues. Each acidic residue of the D,D(35)E motif is independently essential for the 3′-processing and strand transfer activities of purified HIV-1 IN protein. Using a replication-defective viral genome with a hygromycin selectable marker, we recently reported that a mutation at any of the three residues of the D,D(35)E motif produces a 103- to 104-fold reduction in infectious titer compared with virus encoding wild-type IN (A. D. Leavitt et al., J. Virol. 70:721–728. 1996). The infectious titer, as measured by the number of hygromycin-resistant colonies formed following infection of cells in culture, was less than a few hundred colonies per μg of p24. To understand the mechanism by which the mutant virions conferred hygromycin resistance, we characterized the integrated viral DNA in cells infected with virus encoding mutations at each of the three residues of the D,D(35)E motif. We found the integrated viral DNA to be colinear with the incoming viral genome. DNA sequencing of the junctions between integrated viral DNA and host DNA showed that (i) the characteristic 5-bp direct repeat of host DNA flanking the HIV-1 provirus was not maintained, (ii) integration often produced a deletion of host DNA, (iii) integration sometimes occurred without the viral DNA first undergoing 3′-processing, (iv) integration sites showed a strong bias for a G residue immediately adjacent to the conserved viral CA dinucleotide, and (v) mutations at each of the residues of the D,D(35)E motif produced essentially identical phenotypes. We conclude that mutations at any of the three acidic residues of the conserved D,D(35)E motif so severely impair IN activity that most, if not all, integration events by virus encoding such mutations are not IN mediated. IN-independent provirus formation may have implications for anti-IN therapeutic agents that target the IN active site.


2007 ◽  
Vol 81 (22) ◽  
pp. 12189-12199 ◽  
Author(s):  
Krishan K. Pandey ◽  
Sibes Bera ◽  
Jacob Zahm ◽  
Ajaykumar Vora ◽  
Kara Stillmock ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) integrase (IN) inserts the viral DNA genome into host chromosomes. Here, by native agarose gel electrophoresis, using recombinant IN with a blunt-ended viral DNA substrate, we identified the synaptic complex (SC), a transient early intermediate in the integration pathway. The SC consists of two donor ends juxtaposed by IN noncovalently. The DNA ends within the SC were minimally processed (∼15%). In a time-dependent manner, the SC associated with target DNA and progressed to the strand transfer complex (STC), the nucleoprotein product of concerted integration. In the STC, the two viral DNA ends are covalently attached to target and remain associated with IN. The diketo acid inhibitors and their analogs effectively inhibit HIV-1 replication by preventing integration in vivo. Strand transfer inhibitors L-870,810, L-870,812, and L-841,411, at low nM concentrations, effectively inhibited the concerted integration of viral DNA donor in vitro. The inhibitors, in a concentration-dependent manner, bound to IN within the SC and thereby blocked the docking onto target DNA, which thus prevented the formation of the STC. Although 3′-OH recessed donor efficiently formed the STC, reactions proceeding with this substrate exhibited marked resistance to the presence of inhibitor, requiring significantly higher concentrations for effective inhibition of all strand transfer products. These results suggest that binding of inhibitor to the SC occurs prior to, during, or immediately after 3′-OH processing. It follows that the IN-viral DNA complex is “trapped” by the strand transfer inhibitors via a transient intermediate within the cytoplasmic preintegration complex.


2004 ◽  
Vol 78 (6) ◽  
pp. 3123-3132 ◽  
Author(s):  
Bradley C. Logsdon ◽  
John F. Vickrey ◽  
Philip Martin ◽  
Gheorghe Proteasa ◽  
Jay I. Koepke ◽  
...  

ABSTRACT The goal of this study was to use X-ray crystallography to investigate the structural basis of resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors. We overexpressed, purified, and crystallized a multidrug-resistant (MDR) HIV-1 protease enzyme derived from a patient failing on several protease inhibitor-containing regimens. This HIV-1 variant contained codon mutations at positions 10, 36, 46, 54, 63, 71, 82, 84, and 90 that confer drug resistance to protease inhibitors. The 1.8-angstrom (Å) crystal structure of this MDR patient isolate reveals an expanded active-site cavity. The active-site expansion includes position 82 and 84 mutations due to the alterations in the amino acid side chains from longer to shorter (e.g., V82A and I84V). The MDR isolate 769 protease “flaps” stay open wider, and the difference in the flap tip distances in the MDR 769 variant is 12 Å. The MDR 769 protease crystal complexes with lopinavir and DMP450 reveal completely different binding modes. The network of interactions between the ligands and the MDR 769 protease is completely different from that seen with the wild-type protease-ligand complexes. The water molecule-forming hydrogen bonds bridging between the two flaps and either the substrate or the peptide-based inhibitor are lacking in the MDR 769 clinical isolate. The S1, S1′, S3, and S3′ pockets show expansion and conformational change. Surface plasmon resonance measurements with the MDR 769 protease indicate higher k off rates, resulting in a change of binding affinity. Surface plasmon resonance measurements provide k on and k off data (Kd = k off/k on) to measure binding of the multidrug-resistant protease to various ligands. This MDR 769 protease represents a new antiviral target, presenting the possibility of designing novel inhibitors with activity against the open and expanded protease forms.


2003 ◽  
Vol 77 (7) ◽  
pp. 3962-3972 ◽  
Author(s):  
Betty Poon ◽  
Irvin S. Y. Chen

ABSTRACT Retroviral DNA synthesized prior to integration, termed unintegrated viral DNA, is classically believed to be transcriptionally inert and to serve only as a precursor to the transcriptionally active integrated proviral DNA form. However, it has recently been found to be expressed under some circumstances during human immunodeficiency virus type 1 (HIV-1) replication and may play a significant role in HIV-1 pathogenesis. HIV-1 Vpr is a virion-associated accessory protein that is critical for HIV-1 replication in nondividing cells and induces cell cycle arrest and apoptosis. We find that Vpr, either expressed de novo or released from virions following viral entry, is essential for unintegrated viral DNA expression. HIV-1 mutants defective for integration in either the integrase catalytic domain or the cis-acting att sites can express unintegrated viral DNA at levels similar to that of wild-type HIV-1, but only in the presence of Vpr. In the absence of Vpr, the expression of unintegrated viral DNA decreases 10- to 20-fold. Vpr does not affect the efficiency of integration from integrase-defective HIV-1. Vpr-mediated enhancement of expression from integrase-defective HIV-1 requires that the viral DNA be generated in cells through infection and is mediated via a template that declines over time. Vpr activation of expression does not require exclusive nuclear localization of Vpr nor does it correlate with Vpr-mediated cell cycle arrest. These results attribute a new function to HIV-1 Vpr and implicate Vpr as a critical component in expression from unintegrated HIV-1 DNA.


2006 ◽  
Vol 80 (23) ◽  
pp. 11710-11722 ◽  
Author(s):  
Fei Guo ◽  
Shan Cen ◽  
Meijuan Niu ◽  
Jenan Saadatmand ◽  
Lawrence Kleiman

ABSTRACT Cells are categorized as being permissive or nonpermissive according to their ability to produce infectious human immunodeficiency virus type 1 (HIV-1) lacking the viral protein Vif. Nonpermissive cells express the human cytidine deaminase APOBEC3G (hA3G), and Vif has been shown to bind to APOBEC3G and facilitate its degradation. Vif-negative HIV-1 virions produced in nonpermissive cells incorporate hA3G and have a severely reduced ability to produce viral DNA in newly infected cells. While it has been proposed that the reduction in DNA production is due to hA3G-facilitated deamination of cytidine, followed by DNA degradation, we provide evidence here that a decrease in the synthesis of the DNA by reverse transcriptase may account for a significant part of this reduction. During the infection of cells with Vif-negative HIV-1 produced from 293T cells transiently expressing hA3G, much of the inhibition of early (≥50% reduction) and late (≥95% reduction) viral DNA production, and of viral infectivity (≥95% reduction), can occur independently of DNA deamination. The inhibition of the production of early minus-sense strong stop DNA is also correlated with a similar inability of tRNA3 Lys to prime reverse transcription. A similar reduction in tRNA3 Lys priming and viral infectivity is also seen in the naturally nonpermissive cell H9, albeit at significantly lower levels of hA3G expression.


1990 ◽  
Vol 172 (4) ◽  
pp. 1035-1042 ◽  
Author(s):  
C D Pauza ◽  
J E Galindo ◽  
D D Richman

High levels of unintegrated viral DNA accumulate during human immunodeficiency virus type 1 (HIV-1) infection of CEM T cells. Reinfection of already infected cells is required to attain these levels and reinfection also promotes the development of HIV-induced cytopathology. Rates of virus production, however, are independent of the accumulation of unintegrated viral DNA. Neutralizing antibody added soon after infection reduced viral DNA levels without appreciably affecting the production of cell-free viral p24 antigen or reverse transcriptase activity. Only 50 pM AZT were required to reduce the accumulation of unintegrated viral DNA by 50% in contrast to the 25 nM required to inhibit virus production by 50%. Cytopathology, as measured by number of syncytia in infected cell cultures, was correlated with highly elevated levels of unintegrated viral DNA. The minimal levels of unintegrated viral DNA present constitutively in the persistently infected HCEM cell line were consonant with the absence of cytopathic effects in these cells. These data demonstrate that inhibiting the reinfection of already infected cells modulates cytopathic HIV-1 infection to a form that is persistent and noncytopathic.


2004 ◽  
Vol 78 (7) ◽  
pp. 3387-3397 ◽  
Author(s):  
Elena N. Peletskaya ◽  
Alex A. Kogon ◽  
Steven Tuske ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT Site-directed photoaffinity cross-linking experiments were performed by using human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) mutants with unique cysteine residues at several positions (i.e., positions 65, 67, 70, and 74) in the fingers subdomain of the p66 subunit. Since neither the introduction of the unique cysteine residues into the fingers nor the modification of the SH groups of these residues with photoaffinity cross-linking reagents caused a significant decrease in the enzymatic activities of RT, we were able to use this system to measure distances between specific positions in the fingers domain of RT and double-stranded DNA. HIV-1 RT is quite flexible. There are conformational changes associated with binding of the normal substrates and nonnucleoside RT inhibitors (NNRTIs). Cross-linking was used to monitor intramolecular movements associated with binding of an NNRTI either in the presence or in the absence of an incoming deoxynucleoside triphosphate (dNTP). Binding an incoming dNTP at the polymerase active site decreased the efficiency of cross-linking but caused only modest changes in the preferred positions of cross-linking. This finding suggests that the fingers of p66 are closer to an extended template in the “open” configuration of the enzyme with the fingers away from the active site than in the closed configuration with the fingers in direct contact with the incoming dNTP. NNRTI binding caused increased cross-linking in experiments with diazirine reagents (especially with a diazirine reagent with a longer linker) and a moderate shift in the preferred sites of interaction with the template. Cross-linking occurred closer to the polymerase active site for RTs modified at positions 70 and 74. The effects of NNRTI binding were more pronounced in the absence of a bound dNTP; pretreatment of HIV-1 RT with an NNRTI reduced the effect of dNTP binding. These observations can be explained if the binding of NNRTI causes a decrease in the flexibility in the fingers subdomain of RT-NNRTI complex and a decrease in the distance from the fingers to the template extension.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 979
Author(s):  
Ehsan Suleiman ◽  
Julia Mayer ◽  
Elisabeth Lehner ◽  
Bianca Kohlhauser ◽  
Alexandra Katholnig ◽  
...  

The display of native-like human immunodeficiency virus type 1 envelope (HIV-1 Env) trimers on liposomes has gained wide attention over the last few years. Currently, available methods have enabled the preparation of Env-liposome conjugates of unprecedented quality. However, these protocols require the Env trimer to be tagged and/or to carry a specific functional group. For this reason, we have investigated N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide/N-Hydroxysulfosuccinimide (EDC/Sulfo-NHS) chemistry for its potential to covalently conjugate tag-free, non-functionalized native-like Env trimers onto the surface of carboxyl-functionalized liposomes. The preservation of the liposome’s physical integrity and the immunogen’s conformation required a fine-tuned two-step approach based on the controlled use of β-mercaptoethanol. The display of Env trimers was strictly limited to activated liposomes of positive charge, i.e., liposomes with a positive zeta potential that carry amine-reactive Sulfo-NHS esters on their surface. In agreement with that, conjugation was found to be highly ionic strength- and pH-dependent. Overall, we have identified electrostatic pre-concentration (i.e., close proximity between negatively charged Env trimers and positively charged liposomes established through electrostatic attraction) to be crucial for conjugation reactions to proceed. The present study highlights the requirements and limitations of potentially scalable EDC/Sulfo-NHS-based approaches and represents a solid basis for further research into the controlled conjugation of tag-free, non-functionalized native-like Env trimers on the surface of liposomes, and other nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document