scholarly journals In Vivo Rescue of a Silent tax-Deficient Bovine Leukemia Virus from a Tumor-Derived Ovine B-Cell Line by Recombination with a Retrovirally Transduced Wild-Type taxGene

1999 ◽  
Vol 73 (2) ◽  
pp. 1054-1065 ◽  
Author(s):  
Anne Van Den Broeke ◽  
Claude Bagnis ◽  
Malgorzata Ciesiolka ◽  
Yvette Cleuter ◽  
Hans Gelderblom ◽  
...  

ABSTRACT The lack of bovine leukemia virus (BLV) expression is a consistent finding in freshly isolated ovine tumor cells and in the B-cell lines derived from these tumors. In order to gain further insight into the mechanisms of BLV silencing in these tumors, we have used the YR2 B-cell line, which was derived from the leukemic cells of a BLV-infected sheep. This cell line contains a single, monoclonally integrated, silent provirus, which cannot be reactivated either by stimulation in vitro or by in vivo injection of the tumor cells or cloned proviral DNA in sheep. Sequence analysis of the taxgene from the YR2 cell line identified two G-to-A transitions (G7924 to A7924 and G8149 to A8149) that result in E-to-K amino acid changes at positions 228 and 303 in the Tax protein. Following retroviral vector-mediated transfer of a wild-type tax gene into YR2 cells, we showed that BLV mRNA, viral proteins, and virions were produced, demonstrating that the cellular factors required for virus expression were present in the original YR2 cell line. Injection of this transduced YR2 cell line in sheep led to the rescue of replication-competent BLV proviruses. The integrated competent proviruses exhibited unique chimeric tax genes, which arose from homologous recombination between the transduced wild-typetax and the YR2-derived tax sequences. Furthermore, in one of these functional recombinant proviruses, only the A8149-to-G8149 reversion was present, providing clear evidence that the defect underlying the silent phenotype in YR2 cells results from a single C-terminal E303-to-K303 amino acid substitution in the BLV Tax protein. Our observations suggest that a single strategically located mutation in tax provides a mechanism for BLV inactivation in B-cell tumors.

2003 ◽  
Vol 77 (3) ◽  
pp. 1894-1903 ◽  
Author(s):  
Shigeru Tajima ◽  
Masahiko Takahashi ◽  
Shin-nosuke Takeshima ◽  
Satoru Konnai ◽  
Shan Ai Yin ◽  
...  

ABSTRACT In a previous study, we identified an interesting mutant form of the Tax protein of bovine leukemia virus (BLV), designated D247G. This mutant protein strongly transactivated the long terminal repeat of BLV and was also able to transactivate the cellular proto-oncogene c-fos. This finding suggested that BLV that encode the mutant protein might propagate and induce lymphoma more efficiently than wild-type BLV. To characterize the effects of the strong transactivation activity of the mutant Tax protein, we constructed an infectious molecular clone of BLV that encoded D247G and examined the replication and propagation of the virus in vitro and in vivo. Cultured cells were transfected with the wild-type and mutant BLV, and then levels of viral proteins and particles and the propagation of viruses were compared. As expected, in vitro, mutant BLV produced more viral proteins and particles and was transmitted very effectively. We injected the wild-type and mutant BLV into sheep, which are easily infected with BLV, and monitored the proportion of BLV-positive cells in the blood and the expression of BLV RNA for 28 weeks. By contrast to the results of our analyses in vitro, we found no significant difference in the viral load or the expression of viral RNA between sheep inoculated with wild-type or mutant BLV. Our observations indicate that the mutant D247G Tax protein does not enhance the expansion of BLV and that there might be a dominant mechanism for regulation of the expression of BLV in vivo.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2450-2450
Author(s):  
Franz X Schaub ◽  
Weimin Li ◽  
Mohammad Fallahi ◽  
Chunying Yang ◽  
Stephanie K Schaub ◽  
...  

Abstract Metabolic reprogramming is a hallmark of cancer. MYC oncoproteins control many aspects of this response, by inducing the expression of genes involved in mitochondrial biogenesis, glycolysis, glutaminolysis and amino acid transport. This coordinated response allows cancer cells to meet the demands for macromolecules and energy necessary to sustain the anabolic state. Normal cells adapt to nutrient-limiting conditions, such as amino acid (AA) starvation, by activating the autophagy-lysosomal pathway that is necessary for the maintenance of amino acid pools and for providing other building blocks (e.g., ATP) that are needed for cell survival. Surprisingly, our ex vivo and in vivo studies of premalignant and neoplastic MYC-expressing B cells of Eμ-Myc transgenic mice, and of human MYC-driven B cell lymphoma (e.g., Burkitt lymphoma), revealed that MYC suppresses the catabolic autophagy-lysosomal pathway, and that, accordingly, Myc-expressing premalignant and neoplastic B cells are exquisitely sensitive to AA starvation. For example, analyses of the effects of low (6%) versus high (20%) protein diets revealed that limiting AA pools in vivo selectively reduces the numbers of circulating premalignant Eμ-Myc B220+ B cells without affecting B cell numbers in wild type littermate mice. Thus, MYC-driven tumor cells are unable to sufficiently adapt to a state of nutrient deprivation (Figure 1). Expression analyses revealed that this MYC suppresses the autophagy-lysosomal system by transcriptionally repressing genes that encode regulators and components of this pathway, and that this response is a hallmark of human malignancies with MYC involvement. Further, suppressing these genes has functional consequences, where MYC provokes marked reductions in autophagic flux that lead to marked increases in the levels of cargo such as p62/Sequestrin that are normally degraded by this pathway. A master regulator of autophagy and lysosomal biogenesis is TFEB that, like MYC, functions as a basic helix-loop-helix leucine zipper transcription factor and shares a similar DNA recognition sequence. Our studies suggest that MYC blocks TFEB function at three levels. First, MYC can directly repress TFEB transcription. Second, MYC can directly repress TFEB transcription targets by competing with TFEB for binding to the promoter-regulatory regions of autophagy-lysosome gene targets. Third, MYC-expressing B cells have activated mTORC1, which phosphorylates TFEB and blocks its nuclear localization. Notably, forced reactivation of the autophagy-lysosomal pathway via inducible expression of a of a constitutively active (mTORC1-resistant and nuclear) form of TFEB (TFEBS211A) disables the malignant state, where TFEBS211A triggers cell cycle arrest and senescence of both mouse and human MYC-driven lymphomas ex vivo, and compromises tumorigenic potential in vivo. Thus, TFEB acts as tumor suppressor for MYC-driven malignancies. We hypothesized that MYC-driven tumor cells compensate for the reductions in the autophagy pathway and maintain AA homeostasis by activating compensatory mechanisms, including AA transport and the proteasome. In support of this notion, the expression of AA transporters and components of the proteasome, and AA transport and proteasome activity, are markedly augmented in premalignant and neoplastic MYC-expressing B cells. Accordingly, MYC-expressing B cells are exquisitely sensitive to treatment with proteasome inhibitors. Collectively, these findings suggest that MYC drives the anabolic state by suppressing the catabolic autophagy-lysosomal pathway, and that to maintain AA pools MYC-driven cancer cells up-regulate AA transport and the proteasome. This scenario provides attractive opportunities for combination therapies that should disable MYC-driven malignancies, including protein-restricted diets and proteasome and TORC1. Figure 1. Premalignant Eμ-Myc and wild type (WT) littermates were treated for one week with low (6%) and high (20%) protein diets and B220+ cell numbers in peripheral blood were assessed. Figure 1. Premalignant Eμ-Myc and wild type (WT) littermates were treated for one week with low (6%) and high (20%) protein diets and B220+ cell numbers in peripheral blood were assessed. Disclosures No relevant conflicts of interest to declare.


2010 ◽  
Vol 285 (25) ◽  
pp. 19434-19449 ◽  
Author(s):  
Valérie Pierard ◽  
Allan Guiguen ◽  
Laurence Colin ◽  
Gaëlle Wijmeersch ◽  
Caroline Vanhulle ◽  
...  

2002 ◽  
Vol 76 (5) ◽  
pp. 2557-2562 ◽  
Author(s):  
Shigeru Tajima ◽  
Yoko Aida

ABSTRACT Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leukosis. We previously identified several mutants of the BLV Tax protein with an ability to transactivate transcription via the BLV enhancer that is significantly greater than that of the wild-type Tax protein. Moreover, the mutant proteins also activated other viral enhancers, such as the enhancer of human T-cell leukemia virus type 1, which cannot be activated by wild-type BLV Tax. In this study, we demonstrated that the mutant proteins but not wild-type protein activate the upstream sequence of the human c-fos gene, which contains two major cis-acting elements, the CArG box and cyclic AMP-responsive element (CRE) motif. The mutant protein also strongly increased levels of endogenous c-fos mRNA in both human and bovine cell lines. On the other hand, the wild-type Tax protein has no activity to activate the expression of human c-fos, indicating that wild-type BLV Tax might discriminate between human and bovine c-fos promoter sequences. Deletion and point-mutational analysis of the cis-acting elements revealed that both the CArG box and the CRE motif were indispensable for the activation of c-fos by the mutant BLV Tax protein. Our results suggest that the mutant BLV Tax proteins might not only have the ability to enhance the production of virus particles but might also have increased ability to induce leukemia.


Virology ◽  
1998 ◽  
Vol 243 (1) ◽  
pp. 235-246 ◽  
Author(s):  
Shigeru Tajima ◽  
Wen Zhong Zhuang ◽  
Mitsuo V. Kato ◽  
Kosuke Okada ◽  
Yoji Ikawa ◽  
...  

2000 ◽  
Vol 74 (21) ◽  
pp. 9895-9902 ◽  
Author(s):  
Jean-Claude Twizere ◽  
Pierre Kerkhofs ◽  
Arsène Burny ◽  
Daniel Portetelle ◽  
Richard Kettmann ◽  
...  

ABSTRACT Bovine leukemia virus (BLV) Tax protein, a transcriptional activator of viral expression, is essential for viral replication in vivo. Tax is believed to be involved in leukemogenesis because of its second function, immortalization of primary cells in vitro. These activities of Tax can be dissociated on the basis of point mutations within specific regions of the protein. For example, mutation of the phosphorylation sites at serines 106 and 293 abrogates immortalization potential in vitro but maintains transcriptional activity. This type of mutant is thus particularly useful for unraveling the role of Tax immortalization activity during leukemogenesis independently of viral replication. In this report, we describe the biological properties of BLV recombinant proviruses mutated in the Tax phosphorylation sites (BLVTax106+293). Titration of the proviral loads by semiquantitative PCR revealed that the BLV mutants propagated at wild-type levels in vivo. Furthermore, two animals (sheep 480 and 296) infected with BLVTax106+293 developed leukemia or lymphosarcoma after 16 and 36 months, respectively. These periods of time are within the normal range of latencies preceding the onset of pathogenesis induced by wild-type viruses. The phenotype of the mutant-infected cells was characteristic of a B lymphocyte (immunoglobulin M positive) expressing CD11b and CD5 (except at the final stage for the latter marker), a pattern that is typical of wild-type virus-infected target cells. Interestingly, the transformed B lymphocytes from sheep 480 also coexpressed the CD8 marker, a phenotype rarely observed in tumor biopsies from chronic lymphocytic leukemia patients. Finally, direct sequencing of the tax gene demonstrated that the leukemic cells did not harbor revertant proviruses. We conclude that viruses expressing a Tax mutant unable to transform primary cells in culture are still pathogenic in the sheep animal model. Our data thus provide a clear example of the discordant conclusions that can be drawn from in vitro immortalization assays and in vivo experiments. These observations could be of interest for other systems, such as the related human T-cell leukemia virus type 1, which currently lack animal models allowing the study of the leukemogenic process.


1999 ◽  
Vol 73 (10) ◽  
pp. 8890-8897 ◽  
Author(s):  
Joel Rovnak ◽  
James W. Casey

ABSTRACT Reverse transcriptase PCR (RT-PCR) consistently detected bovine leukemia virus transcripts in fresh cells, and competitive RT-PCR enumerated these transcripts. The detection of transcripts in limited numbers of tumor cells indicated that expression occurs in a minority of cells. The data suggest that individual cells contain hundreds of copies of the tax/rex transcript in vivo.


2001 ◽  
Vol 75 (15) ◽  
pp. 6977-6988 ◽  
Author(s):  
C. Merezak ◽  
C. Pierreux ◽  
E. Adam ◽  
F. Lemaigre ◽  
G. G. Rousseau ◽  
...  

ABSTRACT Repression of viral expression is a major strategy developed by retroviruses to escape from the host immune response. The absence of viral proteins (or derived peptides) at the surface of an infected cell does not permit the establishment of an efficient immune attack. Such a strategy appears to have been adopted by animal oncoviruses such as bovine leukemia virus (BLV) and human T-cell leukemia virus (HTLV). In BLV-infected animals, only a small fraction of the infected lymphocytes (between 1 in 5,000 and 1 in 50,000) express large amounts of viral proteins; the vast majority of the proviruses are repressed at the transcriptional level. Induction of BLV transcription involves the interaction of the virus-encoded Tax protein with the CREB/ATF factors; the resulting complex is able to interact with three 21-bp Tax-responsive elements (TxRE) located in the 5′ long terminal repeat (5′ LTR). These TxRE contain cyclic AMP-responsive elements (CRE), but, remarkably, the “TGACGTCA” consensus is never strictly conserved in any viral strain (e.g.,AGACGTCA, TGACGGCA, TGACCTCA). To assess the role of these suboptimal CREs, we introduced a perfect consensus sequence within the TxRE and showed by gel retardation assays that the binding efficiency of the CREB/ATF proteins was increased. However,trans-activation of a luciferase-based reporter by Tax was not affected in transient transfection assays. Still, in the absence of Tax, the basal promoter activity of the mutated LTR was increased as much as 20-fold. In contrast, mutation of other regulatory elements within the LTR (the E box, NF-κB, and glucocorticoid- or interferon-responsive sites [GRE or IRF]) did not induce a similar alteration of the basal transcription levels. To evaluate the biological relevance of these observations made in vitro, the mutations were introduced into an infectious BLV molecular clone. After injection into sheep, it appeared that all the recombinants were infectious in vivo and did not revert into a wild-type virus. All of them, except one, propagated at wild-type levels, indicating that viral spread was not affected by the mutation. The sole exception was the CRE mutant; proviral loads were drastically reduced in sheep infected with this type of virus. We conclude that a series of sites (NF-κB, IRF, GRE, and the E box) are not required for efficient viral spread in the sheep model, although mutation of some of these motifs might induce a minor phenotype during transient transfection assays in vitro. Remarkably, a provirus (pBLV-Δ21-bp) harboring only two TxRE was infectious and propagated at wild-type levels. And, most importantly, reconstitution of a consensus CRE, within the 21-bp enhancers increases binding of CREB/ATF proteins but abrogates basal repression of LTR-directed transcription in vitro. Suboptimal CREs are, however, essential for efficient viral spread within infected sheep, although these sites are dispensable for infectivity. These results suggest an evolutionary selection of suboptimal CREs that repress viral expression with escape from the host immune response. These observations, which were obtained in an animal model for HTLV-1, are of interest for oncovirus-induced pathogenesis in humans.


Sign in / Sign up

Export Citation Format

Share Document