scholarly journals Comparison of Immunity Generated by Nucleic Acid-, MF59-, and ISCOM-Formulated Human Immunodeficiency Virus Type 1 Vaccines in Rhesus Macaques: Evidence for Viral Clearance

1999 ◽  
Vol 73 (4) ◽  
pp. 3292-3300 ◽  
Author(s):  
Ernst J. Verschoor ◽  
Petra Mooij ◽  
Herman Oostermeijer ◽  
Mike van der Kolk ◽  
Peter ten Haaft ◽  
...  

ABSTRACT The kinetics of T-helper immune responses generated in 16 mature outbred rhesus monkeys (Macaca mulatta) within a 10-month period by three different human immunodeficiency virus type 1 (HIV-1) vaccine strategies were compared. Immune responses to monomeric recombinant gp120SF2 (rgp120) when the protein was expressed in vivo by DNA immunization or when it was delivered as a subunit protein vaccine formulated either with the MF59 adjuvant or by incorporation into immune-stimulating complexes (ISCOMs) were compared. Virus-neutralizing antibodies (NA) against HIV-1SF2 reached similar titers in the two rgp120SF2 protein-immunized groups, but the responses showed different kinetics, while NA were delayed and their levels were low in the DNA-immunized animals. Antigen-specific gamma interferon (IFN-γ) T-helper (type 1-like) responses were detected in the DNA-immunized group, but only after the fourth immunization, and the rgp120/MF59 group generated both IFN-γ and interleukin-4 (IL-4) (type 2-like) responses that appeared after the third immunization. In contrast, rgp120/ISCOM-immunized animals rapidly developed marked IL-2, IFN-γ (type 1-like), and IL-4 responses that peaked after the second immunization. To determine which type of immune responses correlated with protection from infection, all animals were challenged intravenously with 50 50% infective doses of a rhesus cell-propagated, in vivo-titrated stock of a chimeric simian immunodeficiency virus-HIVSF13 construct. Protection was observed in the two groups receiving the rgp120 subunit vaccines. Half of the animals in the ISCOM group were completely protected from infection. In other subunit vaccinees there was evidence by multiple assays that virus detected at 2 weeks postchallenge was effectively cleared. Early induction of potent type 1- as well as type 2-like T-helper responses induced the most-effective immunity.

2003 ◽  
Vol 77 (4) ◽  
pp. 2663-2674 ◽  
Author(s):  
Uma Malhotra ◽  
Sarah Holte ◽  
Tuofu Zhu ◽  
Elizabeth Delpit ◽  
Claire Huntsberry ◽  
...  

ABSTRACT Mounting evidence points to a role for CD4+ T-helper (Th) cell activities in controlling human immunodeficiency virus type 1 (HIV-1) infection. To determine the induction and evolution of Th responses following acute infection, we prospectively analyzed Env- and Gag-specific Th responses longitudinally for 92 patients with acute (n = 28) or early (n = 64) HIV-1 infection (median, 55 days postinfection [DPI]). The probability of detecting HIV-1-specific lymphoproliferative responses was remarkably low, and when present, the responses were more likely to be Gag specific than Env specific (16 versus 5%). Env-specific responses were significantly more common in patients presenting at <30 DPI than in those presenting at 30 to 365 DPI (21 versus 0.5%, P = 0.001). By contrast, Gag-specific responses occurred with similar frequencies among subjects presenting at <30 DPI and 30 to 365 DPI (13 versus 17%, P = 0.6). After treatment, and regardless of the duration of infection before therapy, Gag-specific Th responses predominated. Furthermore, some acutely infected subjects lost detectable Env-specific Th proliferative responses, which failed to reemerge upon treatment. Detailed analysis for one such subject revealed Env-specific lymphoproliferation at 11 DPI but no detectable Env-specific lymphoproliferation or ex vivo gamma interferon (IFN-γ) secretion at multiple subsequent time points. Env-specific CD4+ T-cell clones from 11 DPI recognized six epitopes in both conserved and variable regions within gp120 and gp41, exhibited major histocompatibility complex-restricted cytotoxicity, and secreted high levels of antiviral cytokines. T-cell receptor clonal transcript analyses and autologous virus sequencing revealed that Th cells induced during acute infection were maintained and there were no Th escape mutations. Subsequent analysis for this subject and six of seven others revealed detectable IFN-γ-secreting cells, but only following in vitro gp160 stimulation. In summary, we conclude that Env-specific Th responses are elicited very early in acute infection and may precede Gag-specific responses. The inability to detect Env-specific Th responses over time and despite antiretroviral therapy may reflect low frequencies and impaired proliferative capacity, and viral escape is not necessary for this to occur.


Blood ◽  
1992 ◽  
Vol 80 (8) ◽  
pp. 2128-2135 ◽  
Author(s):  
MP Busch ◽  
TH Lee ◽  
J Heitman

Abstract Various immunologic stimuli and heterologous viral regulatory elements have been shown to increase susceptibility to, and replication of, human immunodeficiency virus type 1 (HIV-1) in lymphocytes and monocytes in vitro. Transfusion of allogeneic blood components from heterologous donors constitutes a profound immunologic stimulus to the recipient, in addition to being a potential route of transmission of lymphotropic viral infections. To investigate the hypothesis that transfusions, and particularly those containing leukocytes, activate HIV-1 replication in infected recipient cells, we cocultured peripheral blood mononuclear cells (PBMC) from three anti-HIV-1-positive individuals with allogeneic donor PBMC, as well as partially purified populations of donor lymphocytes, monocytes, granulocytes, platelets, and red blood cells (RBC) and allogeneic cell-free plasma. Allogeneic PBMC induced a dose-related activation of HIV-1 expression in in vivo infected cells, followed by dissemination of HIV-1 to previously uninfected patient cells. Activation of HIV-1 replication was observed with donor lymphocytes, monocytes, and granulocytes, whereas no effect was seen with leukocyte-depleted RBC, platelets, or plasma (ie, therapeutic blood constituents). Allogeneic donor PBMC were also shown to upregulate HIV-1 expression in a “latently” infected cell line, and to increase susceptibility of heterologous donor PBMC to acute HIV-1 infection. Studies should be performed to evaluate whether transfusions of leukocyte-containing blood components accelerate HIV-1 dissemination and disease progression in vivo. If so, HIV-1-infected patients should be transfused as infrequently as possible and leukocyte-depleted (filtered) blood components should be used to avoid this complication.


2000 ◽  
Vol 74 (15) ◽  
pp. 7039-7047 ◽  
Author(s):  
Louis M. Mansky ◽  
Sandra Preveral ◽  
Luc Selig ◽  
Richard Benarous ◽  
Serge Benichou

ABSTRACT The Vpr protein of human immunodeficiency virus type 1 (HIV-1) influences the in vivo mutation rate of the virus. Since Vpr interacts with a cellular protein implicated in the DNA repair process, uracil DNA glycosylase (UNG), we have explored the contribution of this interaction to the mutation rate of HIV-1. Single-amino-acid variants of Vpr were characterized for their differential UNG-binding properties and used to trans complement vpr null mutant HIV-1. A striking correlation was established between the abilities of Vpr to interact with UNG and to influence the HIV-1 mutation rate. We demonstrate that Vpr incorporation into virus particles is required to influence the in vivo mutation rate and to mediate virion packaging of the nuclear form of UNG. The recruitment of UNG into virions indicates a mechanism for how Vpr can influence reverse transcription accuracy. Our data suggest that distinct mechanisms evolved in primate and nonprimate lentiviruses to reconcile uracil misincorporation into lentiviral DNA.


2003 ◽  
Vol 84 (10) ◽  
pp. 2715-2722 ◽  
Author(s):  
Gkikas Magiorkinis ◽  
Dimitrios Paraskevis ◽  
Anne-Mieke Vandamme ◽  
Emmanouil Magiorkinis ◽  
Vana Sypsa ◽  
...  

Recombination plays a pivotal role in the evolutionary process of many different virus species, including retroviruses. Analysis of all human immunodeficiency virus type 1 (HIV-1) intersubtype recombinants revealed that they are more complex than described initially. Recombination frequency is higher within certain genomic regions, such as partial reverse transcriptase (RT), vif/vpr, the first exons of tat/rev, vpu and gp41. A direct correlation was observed between recombination frequency and sequence similarity across the HIV-1 genome, indicating that sufficient sequence similarity is required upstream of the recombination breakpoint. This finding suggests that recombination in vivo may occur preferentially during reverse transcription through the strand displacement-assimilation model rather than the copy-choice model.


2009 ◽  
Vol 83 (19) ◽  
pp. 9875-9889 ◽  
Author(s):  
Elodie Beaumont ◽  
Daniela Vendrame ◽  
Bernard Verrier ◽  
Emmanuelle Roch ◽  
François Biron ◽  
...  

ABSTRACT Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs). The strong conservation of CT length in primary isolates of HIV-1 suggests that this factor plays a key role in viral replication and persistence in infected patients. However, we report here the emergence and dominance of a primary HIV-1 variant carrying a natural 20-amino-acid truncation of the CT in vivo. We demonstrated that this truncation was deleterious for viral replication in cell culture. We then identified a compensatory amino acid substitution in the matrix protein that reversed the negative effects of CT truncation. The loss or rescue of infectivity depended on the level of Env incorporation into virus particles. Interestingly, we found that a virus mutant with defective Env incorporation was able to spread by cell-to-cell transfer. The effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by in vitro studies based on T-cell laboratory-adapted virus mutants, but we provide here the first demonstration of the natural occurrence of similar mechanisms in an infected patient. Our findings provide insight into the potential of HIV-1 to evolve in vivo and its ability to overcome major structural alterations.


2004 ◽  
Vol 78 (14) ◽  
pp. 7645-7652 ◽  
Author(s):  
Peter C. Chien ◽  
Sandra Cohen ◽  
Michael Tuen ◽  
James Arthos ◽  
Pei-de Chen ◽  
...  

ABSTRACT T-helper responses are important for controlling chronic viral infections, yet T-helper responses specific to human immunodeficiency virus type 1 (HIV-1), particularly to envelope glycoproteins, are lacking in the vast majority of HIV-infected individuals. It was previously shown that the presence of antibodies to the CD4-binding domain (CD4bd) of HIV-1 glycoprotein 120 (gp120) prevents T-helper responses to gp120, but their suppressive mechanisms were undefined (C. E. Hioe et al., J. Virol. 75:10950-10957, 2001). The present study demonstrates that gp120, when complexed to anti-CD4bd antibodies, becomes more resistant to proteolysis by lysosomal enzymes from antigen-presenting cells such that peptide epitopes are not released and presented efficiently by major histocompatibility complex class II molecules to gp120-specific CD4 T cells. Antibodies to other gp120 regions do not confer this effect. Thus, HIV may evade anti-viral T-helper responses by inducing and exploiting antibodies that conceal the virus envelope antigens from T cells.


2003 ◽  
Vol 77 (5) ◽  
pp. 3119-3130 ◽  
Author(s):  
Ming Dong ◽  
Peng Fei Zhang ◽  
Franziska Grieder ◽  
James Lee ◽  
Govindaraj Krishnamurthy ◽  
...  

ABSTRACT We have studied the induction of neutralizing antibodies by in vivo expression of the human immunodeficiency virus type 1 (HIV-1) envelope by using a Venezuelan equine encephalitis virus (VEE) replicon system with mice and rabbits. The HIV-1 envelope, clone R2, has broad sensitivity to cross-reactive neutralization and was obtained from a donor with broadly cross-reactive, primary virus-neutralizing antibodies (donor of reference serum, HIV-1-neutralizing serum 2 [HNS2]). It was expressed as gp160, as secreted gp140, and as gp160ΔCT with the cytoplasmic tail deleted. gp140 was expressed in vitro at a high level and was predominantly uncleaved oligomer. gp160ΔCT was released by cells in the form of membrane-bound vesicles. gp160ΔCT induced stronger neutralizing responses than the other forms. Use of a helper plasmid for replicon particle packaging, in which the VEE envelope gene comprised a wild-type rather than a host range-adapted sequence, also enhanced immunogenicity. Neutralizing activity fractionated with immunoglobulin G. This activity was cross-reactive among a panel of five nonhomologous primary clade B strains and a Chinese clade C strain and minimally reactive against a Chinese clade E (circulating recombinant form 1) strain. The comparative neutralization of these strains by immune mouse sera was similar to the relative neutralizing effects of HNS2, and responses induced in rabbits were similar to those induced in mice. Together, these results demonstrate that neutralizing antibody responses can be induced in mice within 2 to 3 months that are similar in potency and cross-reactivity to those found in the chronically infected, long-term nonprogressive donor of HNS2. These findings support the expectation that induction of highly cross-reactive HIV-1 primary virus-neutralizing activity by vaccination may be realized.


2007 ◽  
Vol 81 (10) ◽  
pp. 5325-5330 ◽  
Author(s):  
Adam MacNeil ◽  
Abdoulaye Dieng Sarr ◽  
Jean-Louis Sankalé ◽  
Seema Thakore Meloni ◽  
Souleymane Mboup ◽  
...  

ABSTRACT Studies have shown that human immunodeficiency virus type 2 (HIV-2) is less pathogenic than HIV-1, with a lower rate of disease progression. Similarly, plasma viral loads are lower in HIV-2 infection, suggesting that HIV-2 replication is restricted in vivo in comparison to that of HIV-1. However, to date, in vivo studies characterizing replication intermediates in the viral life cycle of HIV-2 have been limited. In order to test the hypothesis that HIV-2 has a lower replication rate in vivo than HIV-1 does, we quantified total viral DNA, integrated proviral DNA, cell-associated viral mRNA, and plasma viral loads in peripheral blood samples from groups of therapy-naïve HIV-1-infected (n = 21) and HIV-2-infected (n = 18) individuals from Dakar, Senegal, with CD4+ T-cell counts of >200/μl. Consistent with our previous findings, total viral DNA loads were similar between HIV-1 and HIV-2 and plasma viral loads were higher among HIV-1-infected individuals. Proportions of DNA in the integrated form were also similar between these viruses. In contrast, levels of viral mRNA were lower in HIV-2 infection. Our study indicates that HIV-2 is able to establish a stable, integrated proviral infection in vivo, but that accumulation of viral mRNA is attenuated in HIV-2 infection relative to that in HIV-1 infection. The differences in viral mRNA are consistent with the differences in plasma viral loads between HIV-1 and HIV-2 and suggest that lower plasma viral loads, and possibly the attenuated pathogenesis of HIV-2, can be explained by lower rates of viral replication in vivo.


2009 ◽  
Vol 83 (8) ◽  
pp. 3617-3625 ◽  
Author(s):  
Xiaoying Shen ◽  
Robert J. Parks ◽  
David C. Montefiori ◽  
Jennifer L. Kirchherr ◽  
Brandon F. Keele ◽  
...  

ABSTRACT The broadly neutralizing human monoclonal antibodies (MAbs) 2F5 and 4E10, both targeting the highly conserved human immunodeficiency virus type 1 (HIV-1) envelope membrane proximal external region (MPER), are among the MAbs with the broadest heterologous neutralizing activity and are of considerable interest for HIV-1 vaccine development. We have identified serum antibodies from an HIV-infected subject that both were broadly neutralizing and specifically targeted MPER epitopes that overlap the 2F5 epitope. These MPER-specific antibodies were made 15 to 20 months following transmission and concomitantly with the development of autoantibodies. Our findings suggest that multiple events (i.e., genetic predisposition and HIV-1 immune dysregulation) may be required for induction of broadly reactive gp41 MPER antibodies in natural infection.


Sign in / Sign up

Export Citation Format

Share Document