scholarly journals Analysis of Cellular Factors That Mediate Nuclear Export of RNAs Bearing the Mason-Pfizer Monkey Virus Constitutive Transport Element

2000 ◽  
Vol 74 (13) ◽  
pp. 5863-5871 ◽  
Author(s):  
Yibin Kang ◽  
Hal P. Bogerd ◽  
Bryan R. Cullen

ABSTRACT There is now convincing evidence that the human Tap protein plays a critical role in mediating the nuclear export of mRNAs that contain the Mason-Pfizer monkey virus constitutive transport element (CTE) and significant evidence that Tap also participates in global poly(A)+ RNA export. Previously, we had mapped carboxy-terminal sequences in Tap that serve as an essential nucleocytoplasmic shuttling domain, while others had defined an overlapping Tap sequence that can bind to the FG repeat domains of certain nucleoporins. Here, we demonstrate that these two biological activities are functionally correlated. Specifically, mutations in Tap that block nucleoporin binding also block both nucleocytoplasmic shuttling and the Tap-dependent nuclear export of CTE-containing RNAs. In contrast, mutations that do not inhibit nucleoporin binding also fail to affect Tap shuttling. Together, these data indicate that Tap belongs to a novel class of RNA export factors that can target bound RNA molecules directly to the nuclear pore without the assistance of an importin β-like cofactor. In addition to nucleoporins, Tap has also been proposed to interact with a cellular cofactor termed p15. Although we were able to confirm that Tap can indeed bind p15 specifically both in vivo and in vitro, a mutation in Tap that blocked p15 binding only modestly inhibited CTE-dependent nuclear RNA export. However, p15 did significantly enhance the affinity of Tap for the CTE in vitro and readily formed a ternary complex with Tap on the CTE. This result suggests that p15 may play a significant role in the recruitment of the Tap nuclear export factor to target RNA molecules in vivo.

2006 ◽  
Vol 17 (2) ◽  
pp. 931-943 ◽  
Author(s):  
Lyne Lévesque ◽  
Yeou-Cherng Bor ◽  
Leah H. Matzat ◽  
Li Jin ◽  
Stephen Berberoglu ◽  
...  

Interactions between transport receptors and phenylalanine-glycine (FG) repeats on nucleoporins drive the translocation of receptor-cargo complexes through nuclear pores. Tap, a transport receptor that mediates nuclear export of cellular mRNAs, contains a UBA-like and NTF2-like folds that can associate directly with FG repeats. In addition, two nuclear export sequences (NESs) within the NTF2-like region can also interact with nucleoporins. The Tap-RNA complex was shown to bind to three nucleoporins, Nup98, p62, and RanBP2, and these interactions were enhanced by Nxt1. Mutations in the Tap-UBA region abolished interactions with all three nucleoporins, whereas the effect of point mutations within the NTF2-like domain of Tap known to disrupt Nxt1 binding or nucleoporin binding were nucleoporin dependent. A mutation in any of these Tap domains was sufficient to reduce RNA export but was not sufficient to disrupt Tap interaction with the NPC in vivo or its nucleocytoplasmic shuttling. However, shuttling activity was reduced or abolished by combined mutations within the UBA and either the Nxt1-binding domain or NESs. These data suggest that Tap requires both the UBA- and NTF2-like domains to mediate the export of RNA cargo, but can move through the pores independently of these domains when free of RNA cargo.


2008 ◽  
Vol 19 (1) ◽  
pp. 327-338 ◽  
Author(s):  
Leah H. Matzat ◽  
Stephen Berberoglu ◽  
Lyne Lévesque

Nuclear export of mRNAs is mediated by the Tap/Nxt1 pathway. Tap moves its RNA cargo through the nuclear pore complex by direct interaction with nucleoporin phenylalanine-glycine repeats. This interaction is strengthened by the formation of a Tap/Nxt1 heterodimer. We now present evidence that Tap can form a multimeric complex with itself and with other members of the NXF family. We also show that the homotypic Tap complex can interact with both Nxt1 and nucleoporins in vitro. The region mediating this oligomerization is localized to the first 187 amino acids of Tap, which overlaps with its RNA-binding domain. Removal of this domain greatly reduces the ability of Tap to bind nucleoporins in vitro and in vivo. This is the first report showing that the Tap amino terminus modulates the interaction of Tap with nucleoporins. We speculate that this mechanism has a regulatory role for RNA export independent of RNA binding.


2000 ◽  
Vol 20 (5) ◽  
pp. 1571-1582 ◽  
Author(s):  
Shrikesh Sachdev ◽  
Sriparna Bagchi ◽  
Donna D. Zhang ◽  
Angela C. Mings ◽  
Mark Hannink

ABSTRACT The inhibitor of kappa B alpha (IκBα) protein is able to shuttle between the cytoplasm and the nucleus. We have utilized a combination of in vivo and in vitro approaches to provide mechanistic insight into nucleocytoplasmic shuttling by IκBα. IκBα contains multiple functional domains that contribute to shuttling of IκBα between the cytoplasm and the nucleus. Nuclear import of IκBα is mediated by the central ankyrin repeat domain. Similar to previously described nuclear import pathways, nuclear import of IκBα is temperature and ATP dependent and is blocked by a dominant-negative mutant of importin β. However, in contrast to classical nuclear import pathways, nuclear import of IκBα is independent of soluble cytosolic factors and is not blocked by the dominant-negative RanQ69L protein. Nuclear export of IκBα is mediated by an N-terminal nuclear export sequence. Nuclear export of IκBα requires the CRM1 nuclear export receptor and is blocked by the dominant-negative RanQ69L protein. Our results are consistent with a model in which nuclear import of IκBα is mediated through direct interactions with components of the nuclear pore complex, while nuclear export of IκBα is mediated via a CRM1-dependent pathway.


2007 ◽  
Vol 81 (24) ◽  
pp. 13552-13565 ◽  
Author(s):  
Natalia Garmashova ◽  
Svetlana Atasheva ◽  
Wenli Kang ◽  
Scott C. Weaver ◽  
Elena Frolova ◽  
...  

ABSTRACT The encephalitogenic New World alphaviruses, including Venezuelan (VEEV), eastern (EEEV), and western equine encephalitis viruses, constitute a continuing public health threat in the United States. They circulate in Central, South, and North America and have the ability to cause fatal disease in humans and in horses and other domestic animals. We recently demonstrated that these viruses have developed the ability to interfere with cellular transcription and use it as a means of downregulating a cellular antiviral response. The results of the present study suggest that the N-terminal, ∼35-amino-acid-long peptide of VEEV and EEEV capsid proteins plays the most critical role in the downregulation of cellular transcription and development of a cytopathic effect. The identified VEEV-specific peptide CVEE33-68 includes two domains with distinct functions: the α-helix domain, helix I, which is critically involved in supporting the balance between the presence of the protein in the cytoplasm and nucleus, and the downstream peptide, which might contain a functional nuclear localization signal(s). The integrity of both domains not only determines the intracellular distribution of the VEEV capsid but is also essential for direct capsid protein functioning in the inhibition of transcription. Our results suggest that the VEEV capsid protein interacts with the nuclear pore complex, and this interaction correlates with the protein's ability to cause transcriptional shutoff and, ultimately, cell death. The replacement of the N-terminal fragment of the VEEV capsid by its Sindbis virus-specific counterpart in the VEEV TC-83 genome does not affect virus replication in vitro but reduces cytopathogenicity and results in attenuation in vivo. These findings can be used in designing a new generation of live, attenuated, recombinant vaccines against the New World alphaviruses.


Botany ◽  
2011 ◽  
Vol 89 (3) ◽  
pp. 175-190 ◽  
Author(s):  
Aaron D. Johnstone ◽  
Robert T. Mullen ◽  
Dev Mangroo

Nuclear tRNA export plays an essential role in several key cellular processes, such as regulation of protein synthesis, cell cycle progression, response to nutrient availability and DNA damage, and development. While the overall mechanism of nuclear tRNA export is, in general, poorly understood, the details of specific steps are emerging from studies conducted in different organisms aimed at identifying and characterizing components involved in the process. Here, we report that Arabidopsis thaliana (L.) Heynh At2g40730 encodes CTEXP, a cytoplasmic protein component of the nuclear tRNA export process. CTEXP bound tRNA directly and saturably, and like the nuclear tRNA export receptor PAUSED, overexpression of CTEXP restored export of a nuclear export-defective lysine amber suppressor tRNA in tobacco cells. CTEXP was also found to associate with nucleoporins of the nuclear pore complex (NPC), PAUSED, and the GTPase Ran in vivo. CTEXP interacted directly with PAUSED in vitro and RanGTP, but not RanGDP. Furthermore, a portion of CTEXP appeared to associate with the NPC. Taken together, the data suggest that CTEXP assists with unloading of tRNAs from PAUSED at the cytoplasmic side of the NPC in plant cells.


1999 ◽  
Vol 10 (3) ◽  
pp. 649-664 ◽  
Author(s):  
Katharine S. Ullman ◽  
Sundeep Shah ◽  
Maureen A. Powers ◽  
Douglass J. Forbes

The fundamental process of nucleocytoplasmic transport takes place through the nuclear pore. Peripheral pore structures are presumably poised to interact with transport receptors and their cargo as these receptor complexes first encounter the pore. One such peripheral structure likely to play an important role in nuclear export is the basket structure located on the nuclear side of the pore. At present, Nup153 is the only nucleoporin known to localize to the surface of this basket, suggesting that Nup153 is potentially one of the first pore components an RNA or protein encounters during export. In this study, anti-Nup153 antibodies were used to probe the role of Nup153 in nuclear export in Xenopus oocytes. We found that Nup153 antibodies block three major classes of RNA export, that of snRNA, mRNA, and 5S rRNA. Nup153 antibodies also block the NES protein export pathway, specifically the export of the HIV Rev protein, as well as Rev-dependent RNA export. Not all export was blocked; Nup153 antibodies did not impede the export of tRNA or the recycling of importin β to the cytoplasm. The specific antibodies used here also did not affect nuclear import, whether mediated by importin α/β or by transportin. Overall, the results indicate that Nup153 is crucial to multiple classes of RNA and protein export, being involved at a vital juncture point in their export pathways. This juncture point appears to be one that is bypassed by tRNA during its export. We asked whether a physical interaction between RNA and Nup153 could be observed, using homoribopolymers as sequence-independent probes for interaction. Nup153, unlike four other nucleoporins including Nup98, associated strongly with poly(G) and significantly with poly(U). Thus, Nup153 is unique among the nucleoporins tested in its ability to interact with RNA and must do so either directly or indirectly through an adaptor protein. These results suggest a unique mechanistic role for Nup153 in the export of multiple cargos.


Author(s):  
Seyedeh Roya Alizadeh ◽  
Mohammad Ali Ebrahimzadeh

: Heterocyclic compounds play a critical role in medicinal chemistry and many available drugs contain heterocyclic rings. A six-membered heterocyclic compound pyridine showed various applications that acts as an important solvent, reagent, and precursor in agrochemicals and pharmaceuticals. Due to the increase of drug resistance, there is an obvious medical need to develop new antiviral agents. Various derivatives of pyridine scaffold display abroad biological activities such as anti-microbial, anti-viral, antioxidant, anti-diabetic, anti-cancer, anti-malaria, analgesic and anti-inflammatory activities, psychopharmacological antagonistic, anti-amoebic agents, and anti-thrombic activity. Due to the high importance of pyridine derivatives, in the present review, we tried to collect and classify many pyridine derivatives based on their structures from 2000 to 2020. Pyridine derivatives were classified into two general categories including pyridine containing heterocycles and pyridine fused rings. Structure-activity relationship (SAR) and the action mechanism of derivatives were also investigated. According to the recent studies, these derivatives exhibited good antiviral activity against different types of viruses such as the human immunodeficiency viruses (HIV), the hepatitis C virus (HCV), the hepatitis B virus (HBV), Respiratory syncytial virus (RSV), and Cytomegalovirus (CMV). These derivatives inhibited viral application with different action mechanism such as RT inhibition, polymerase inhibition, Inhibition of RNase H activity, inhibition of maturation, inhibition of the viral thymidine kinase, AAK1 (Adaptor-Associated Kinase 1) inhibition, GAK (Cyclin G-associated kinase) inhibition, inhibition of post-integrational event, inhibition of HDAC6, CCR5 antagonistic activity, DNA and RNA replication inhibition, gene expression inhibition, cellular NF-jB signaling pathway and neuraminidase (NA) inhibition, protein synthesis inhibition, and generally inhibition of viral replication cycle. This paper summarily expressed the past and present results about the discovery of novel lead compounds with good antiviral activity. Studies exhibited that almost all of the evaluations were performed by way of in vitro testing and is necessary to investigate in vivo and clinical testing for having better evaluations in the future. We believe that pyridine derivatives can be used as promising antiviral agents and needs to perform more broad investigations in this field.


2021 ◽  
Author(s):  
Tycho Marinus ◽  
Adam B Fessler ◽  
Craig A Ogle ◽  
Danny Incarnato

Abstract Due to the mounting evidence that RNA structure plays a critical role in regulating almost any physiological as well as pathological process, being able to accurately define the folding of RNA molecules within living cells has become a crucial need. We introduce here 2-aminopyridine-3-carboxylic acid imidazolide (2A3), as a general probe for the interrogation of RNA structures in vivo. 2A3 shows moderate improvements with respect to the state-of-the-art selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) reagent NAI on naked RNA under in vitro conditions, but it significantly outperforms NAI when probing RNA structure in vivo, particularly in bacteria, underlining its increased ability to permeate biological membranes. When used as a restraint to drive RNA structure prediction, data derived by SHAPE-MaP with 2A3 yields more accurate predictions than NAI-derived data. Due to its extreme efficiency and accuracy, we can anticipate that 2A3 will rapidly take over conventional SHAPE reagents for probing RNA structures both in vitro and in vivo.


2001 ◽  
Vol 152 (5) ◽  
pp. 895-910 ◽  
Author(s):  
Wilma Hofmann ◽  
Beate Reichart ◽  
Andrea Ewald ◽  
Eleonora Müller ◽  
Iris Schmitt ◽  
...  

Nuclear export of proteins containing leucine-rich nuclear export signals (NESs) is mediated by the export receptor CRM1/exportin1. However, additional protein factors interacting with leucine-rich NESs have been described. Here, we investigate human immunodeficiency virus type 1 (HIV-1) Rev-mediated nuclear export and Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE)–mediated nuclear export in microinjected Xenopus laevis oocytes. We show that eukaryotic initiation factor 5A (eIF-5A) is essential for Rev and Rev-mediated viral RNA export, but not for nuclear export of CTE RNA. In vitro binding studies demonstrate that eIF-5A is required for efficient interaction of Rev–NES with CRM1/exportin1 and that eIF-5A interacts with the nucleoporins CAN/nup214, nup153, nup98, and nup62. Quite unexpectedly, nuclear actin was also identified as an eIF-5A binding protein. We show that actin is associated with the nucleoplasmic filaments of nuclear pore complexes and is critically involved in export processes. Finally, actin- and energy-dependent nuclear export of HIV-1 Rev is reconstituted by using a novel in vitro egg extract system. In summary, our data provide evidence that actin plays an important functional role in nuclear export not only of retroviral RNAs but also of host proteins such as protein kinase inhibitor (PKI).


2020 ◽  
Author(s):  
Tycho Marinus ◽  
Adam B. Fessler ◽  
Craig A. Ogle ◽  
Danny Incarnato

ABSTRACTDue to the mounting evidence that RNA structure plays a critical role in regulating almost any physiological as well as pathological process, being able to accurately define the folding of RNA molecules within living cells has become a crucial need. We introduce here 2-aminopyridine-3-carboxylic acid imidazolide (2A3), as a general probe for the interrogation of RNA structures in vivo. 2A3 shows moderate improvements with respect to the state-of-the-art SHAPE reagent NAI on naked RNA under in vitro conditions, but it significantly outperforms NAI when probing RNA structure in vivo, particularly in bacteria, underlining its increased ability to permeate biological membranes. When used as a restraint to drive RNA structure prediction, data derived by SHAPE-MaP with 2A3 yields more accurate predictions than NAI-derived data. Due to its extreme efficiency and accuracy, we can anticipate that 2A3 will rapidly take over conventional SHAPE reagents for probing RNA structures both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document