transport receptor
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 12)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Alessio Fragasso ◽  
Hendrik W. de Vries ◽  
John Andersson ◽  
Eli O. van der Sluis ◽  
Erik van der Giessen ◽  
...  

Nuclear Pore Complexes (NPCs) regulate all molecular transport between the nucleus and the cytoplasm in eukaryotic cells. Intrinsically disordered Phe-Gly nucleoporins (FG Nups) line the central conduit of NPCs to impart a selective barrier where large proteins are excluded unless bound to a transport receptor (karyopherin; Kap). Here, we assess 'Kap-centric' NPC models, which postulate that Kaps participate in establishing the selective barrier. We combine biomimetic nanopores, formed by tethering Nsp1 to the inner wall of a solid-state nanopore, with coarse-grained modeling to show that yeast Kap95 exhibits two populations in Nsp1-coated pores: one population that is transported across the pore in milliseconds, and a second population that is stably assembled within the FG mesh of the pore. Ionic current measurements show a conductance decrease for increasing Kap concentrations and noise data indicate an increase in rigidity of the FG-mesh. Modeling reveals an accumulation of Kap95 near the pore wall, yielding a conductance decrease. We find that Kaps only mildly affect the conformation of the Nsp1 mesh and that, even at high concentrations, Kaps only bind at most 8% of the FG-motifs in the nanopore, indicating that Kap95 occupancy is limited by steric constraints rather than by depletion of available FG-motifs. Our data provide an alternative explanation of the origin of bimodal NPC binding of Kaps, where a stable population of Kaps binds avidly to the NPC periphery, while fast transport proceeds via a central FG-rich channel through lower affinity interactions between Kaps and the cohesive domains of Nsp1.


2021 ◽  
Vol 93 (4) ◽  
pp. 5-17
Author(s):  
R. Yu. Marunych Ye. M. Makogonenko ◽  
◽  
O. O. Hrabovskyi ◽  
G. K. Bereznytskyj ◽  
L. V. Pyrogova ◽  
...  

The review focuses on chloride-binding structures in the proteins of bacteria, plants, viruses and animals. The structure and amino acid composition of the chloride-binding site and its role in the functioning of structural, regulatory, transport, receptor, channel proteins, transcription factors and enzymes are considered. Data on the important role of chloride-binding structures and chloride anions in the polymerization of fibrin are presented.


2021 ◽  
Author(s):  
Mustafa Khokha ◽  
Woong Y. Hwang ◽  
C Patrick Lusk ◽  
Valentyna Kostiuk ◽  
Delfina P González

Wnt signaling is essential for many aspects of embryonic development including the formation of the primary embryonic axis. In addition, excessive Wnt signaling drives multiple diseases including cancer highlighting its importance for disease pathogenesis. β-catenin is a key effector in this pathway that translocates into the nucleus and activates Wnt responsive genes. However, due to our lack of understanding of β-catenin nuclear transport, therapeutic modulation of Wnt signaling has been challenging. Here, we took an unconventional approach to address this long-standing question by exploiting a heterologous model system, the budding yeast Saccharomyces cerevisiae, which contains a conserved nuclear transport machinery. In contrast to prior work, we demonstrate that β-catenin accumulates in the nucleus in a Ran dependent manner, suggesting the use of a nuclear transport receptor (NTR). Indeed, a systematic and conditional inhibition of NTRs revealed that only Kap104, the orthologue of Kap- β2/Transportin-1 (TNPO1), was required for β-catenin nuclear import. We further demonstrate direct binding between TNPO1 and β-catenin that is mediated by a conserved amino acid sequence that resembles a PY NLS. Finally, using Xenopus secondary axis and TCF/LEF reporter assays, we demonstrate that our results in yeast can be directly translated to vertebrates. By elucidating the NLS in β-catenin and its cognate NTR, our study provides new therapeutic targets for a host of human diseases caused by excessive Wnt signaling. Indeed, we demonstrate that a small chimeric peptide designed to target TNPO1 can reduce Wnt signaling as a first step towards therapeutics.


2021 ◽  
Vol 43 (1) ◽  
pp. 153-162
Author(s):  
Hironori Yoshino ◽  
Yoshiaki Sato ◽  
Manabu Nakano

Programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule that negatively regulates anti-tumor immunity. Recent reports indicate that anti-cancer treatments, such as radiation therapy, increase PD-L1 expression on the surface of tumor cells. We previously reported that the nuclear transport receptor karyopherin-β1 (KPNB1) is involved in radiation-increased PD-L1 expression on head-and-neck squamous cell carcinoma cells. However, the mechanisms underlying KPNB1-mediated, radiation-increased PD-L1 expression remain unknown. Thus, the mechanisms of radiation-increased, KPNB1-mediated PD-L1 expression were investigated by focusing on the transcription factor interferon regulatory factor 1 (IRF1), which is reported to regulate PD-L1 expression. Western blot analysis showed that radiation increased IRF1 expression. In addition, flow cytometry showed that IRF1 knockdown decreased cell surface PD-L1 expression of irradiated cells but had a limited effect on non-irradiated cells. These findings suggest that the upregulation of IRF1 after irradiation is required for radiation-increased PD-L1 expression. Notably, immunofluorescence and western blot analyses revealed that KPNB1 inhibitor importazole not only diffused nuclear localization of IRF1 but also decreased IRF1 upregulation by irradiation, which attenuated radiation-increased PD-L1 expression. Taken together, these findings suggest that KPNB1 mediates radiation-increased cell surface PD-L1 expression through both upregulation and nuclear import of IRF1.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alessio Fragasso ◽  
Hendrik W. de Vries ◽  
John Andersson ◽  
Eli O. van der Sluis ◽  
Erik van der Giessen ◽  
...  

AbstractNuclear Pore Complexes (NPCs) regulate bidirectional transport between the nucleus and the cytoplasm. Intrinsically disordered FG-Nups line the NPC lumen and form a selective barrier, where transport of most proteins is inhibited whereas specific transporter proteins freely pass. The mechanism underlying selective transport through the NPC is still debated. Here, we reconstitute the selective behaviour of the NPC bottom-up by introducing a rationally designed artificial FG-Nup that mimics natural Nups. Using QCM-D, we measure selective binding of the artificial FG-Nup brushes to the transport receptor Kap95 over cytosolic proteins such as BSA. Solid-state nanopores with the artificial FG-Nups lining their inner walls support fast translocation of Kap95 while blocking BSA, thus demonstrating selectivity. Coarse-grained molecular dynamics simulations highlight the formation of a selective meshwork with densities comparable to native NPCs. Our findings show that simple design rules can recapitulate the selective behaviour of native FG-Nups and demonstrate that no specific spacer sequence nor a spatial segregation of different FG-motif types are needed to create selective NPCs.


2020 ◽  
Author(s):  
Daniel Lüdke ◽  
Charlotte Roth ◽  
Sieglinde A. Kamrad ◽  
Jana Messerschmidt ◽  
Denise Hartken ◽  
...  

2020 ◽  
Author(s):  
Daniel Lüdke ◽  
Charlotte Roth ◽  
Sieglinde A. Kamrad ◽  
Jana Messerschmidt ◽  
Denise Hartken ◽  
...  

SUMMARYIMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is one of nine importin-α isoforms in Arabidopsis that recruit nuclear localization signal (NLS)-containing cargo proteins to the nuclear import machinery. IMP-α3/MOS6 is required genetically for full autoimmunity of the nucleotide-binding leucine-rich repeat (NLR) immune receptor mutant snc1 (suppressor of npr1-1, constitutive 1) and MOS6 also contributes to basal disease resistance. Here, we investigated the contribution of the other importin-α genes to both types of immune responses, and we analyzed potential interactions of all importin-α isoforms with SNC1. By using reverse-genetic analyses in Arabidopsis and protein-protein interaction assays in N. benthamiana we provide evidence that among the nine α-importins in Arabidopsis, IMP-α3/MOS6 is the main nuclear transport receptor of SNC1, and that IMP-α3/MOS6 is required selectively for autoimmunity of snc1 and basal resistance to mildly virulent Pseudomonas syringae in Arabidopsis.SIGNIFICANCE STATEMENTSpecific requirement for the Arabidopsis α-importin MOS6 in snc1-mediated autoimmunity is explained by selective formation of MOS6-SNC1 nuclear import complexes.


2020 ◽  
Author(s):  
Alessio Fragasso ◽  
Hendrik W. de Vries ◽  
Eli O. van der Sluis ◽  
Erik van der Giessen ◽  
Patrick R. Onck ◽  
...  

AbstractNuclear Pore Complexes (NPCs) regulate bidirectional transport between the nucleus and the cytoplasm. Intrinsically disordered FG-Nups line the NPC lumen and form a selective barrier, where transport of most proteins is inhibited whereas specific transporter proteins freely pass. The mechanism underlying selective transport through the NPC is still debated. Here, we reconstitute the selective behaviour of the NPC bottom-up by introducing a rationally designed artificial FG-Nup that mimics natural Nups. Using QCM-D, we measure a strong affinity of the artificial FG-Nup brushes to the transport receptor Kap95, whereas no binding occurs to cytosolic proteins such as BSA. Solid-state nanopores with the artificial FG-Nups lining their inner walls support fast translocation of Kap95 while blocking BSA, thus demonstrating selectivity. Coarse-grained molecular dynamics simulations highlight the formation of a selective meshwork with densities comparable to native NPCs. Our findings show that simple design rules can recapitulate the selective behaviour of native FG-Nups and demonstrate that no specific spacer sequence nor a spatial segregation of different FG-motif types are needed to create functional NPCs.


2019 ◽  
Author(s):  
Gavin McGauran ◽  
Emma Dorris ◽  
Razvan Borza ◽  
Niamh Morgan ◽  
Denis C. Shields ◽  
...  

AbstractExpression of the macrophage immunometabolism regulator gene (MACIR) is associated with severity of autoimmune disease pathology and the regulation of macrophage biology through unknown mechanisms. The 206 amino acid protein lacks homology to any characterized protein sequence and is a disordered protein according to structure prediction algorithms. Here we identify specific interactions of MACIR using a fragment complementation-based affinity pull down of cellular proteins prepared with a membrane solubilization buffer. Quantitative mass spectrometry showed enrichment of nuclear and mitochondrial proteins and of 63 significant interacting proteins, binding to the nuclear transport receptor TNPO1 and trafficking proteins UNC119 homolog A and B were validated by immunoprecipitation. Analysis of mutations in two candidate recognition motifs in the MACIR amino acid sequence confirmed TNPO1 binds via a PY-NLS motif (aa98-117). Characterizing nuclear MACIR activity in macrophage and fibroblasts is a priority with respect to developing strategies for treatment of autoimmune disease.


2019 ◽  
Vol 20 (9) ◽  
pp. 685-703
Author(s):  
Sanjida Ahmed ◽  
Zia Choudhry ◽  
Junaid A Bhatti

We conducted a scoping review on genetic polymorphisms associated with opioid intake-related adverse patient outcomes including behavioral, physiological and clinical outcomes. We searched for studies on Medline®, EMBASE®, CINAHL®, Psychinfo®and SNPedia®from January 2006 to January 2018. Our study identified 33 genes and 71 SNPs associated with opioid-intake related adverse patient outcomes: four studies showing associations of nine SNPs with clinical events (e.g., arrhythmia, length of stay and deaths); six studies showing associations of 13 SNPs with respiratory depression and 25 studies showing associations of 50 SNPs with opioid misuse behaviors. Available pharmacogenetic-tests covered polymorphisms associated with opioids metabolism and ignored polymorphisms associated with opioids transport, receptor-binding and signaling that were linked with respiratory depression and misuse behaviors.


Sign in / Sign up

Export Citation Format

Share Document