scholarly journals The Nucleoporin Nup153 Plays a Critical Role in Multiple Types of Nuclear Export

1999 ◽  
Vol 10 (3) ◽  
pp. 649-664 ◽  
Author(s):  
Katharine S. Ullman ◽  
Sundeep Shah ◽  
Maureen A. Powers ◽  
Douglass J. Forbes

The fundamental process of nucleocytoplasmic transport takes place through the nuclear pore. Peripheral pore structures are presumably poised to interact with transport receptors and their cargo as these receptor complexes first encounter the pore. One such peripheral structure likely to play an important role in nuclear export is the basket structure located on the nuclear side of the pore. At present, Nup153 is the only nucleoporin known to localize to the surface of this basket, suggesting that Nup153 is potentially one of the first pore components an RNA or protein encounters during export. In this study, anti-Nup153 antibodies were used to probe the role of Nup153 in nuclear export in Xenopus oocytes. We found that Nup153 antibodies block three major classes of RNA export, that of snRNA, mRNA, and 5S rRNA. Nup153 antibodies also block the NES protein export pathway, specifically the export of the HIV Rev protein, as well as Rev-dependent RNA export. Not all export was blocked; Nup153 antibodies did not impede the export of tRNA or the recycling of importin β to the cytoplasm. The specific antibodies used here also did not affect nuclear import, whether mediated by importin α/β or by transportin. Overall, the results indicate that Nup153 is crucial to multiple classes of RNA and protein export, being involved at a vital juncture point in their export pathways. This juncture point appears to be one that is bypassed by tRNA during its export. We asked whether a physical interaction between RNA and Nup153 could be observed, using homoribopolymers as sequence-independent probes for interaction. Nup153, unlike four other nucleoporins including Nup98, associated strongly with poly(G) and significantly with poly(U). Thus, Nup153 is unique among the nucleoporins tested in its ability to interact with RNA and must do so either directly or indirectly through an adaptor protein. These results suggest a unique mechanistic role for Nup153 in the export of multiple cargos.

2000 ◽  
Vol 74 (13) ◽  
pp. 5863-5871 ◽  
Author(s):  
Yibin Kang ◽  
Hal P. Bogerd ◽  
Bryan R. Cullen

ABSTRACT There is now convincing evidence that the human Tap protein plays a critical role in mediating the nuclear export of mRNAs that contain the Mason-Pfizer monkey virus constitutive transport element (CTE) and significant evidence that Tap also participates in global poly(A)+ RNA export. Previously, we had mapped carboxy-terminal sequences in Tap that serve as an essential nucleocytoplasmic shuttling domain, while others had defined an overlapping Tap sequence that can bind to the FG repeat domains of certain nucleoporins. Here, we demonstrate that these two biological activities are functionally correlated. Specifically, mutations in Tap that block nucleoporin binding also block both nucleocytoplasmic shuttling and the Tap-dependent nuclear export of CTE-containing RNAs. In contrast, mutations that do not inhibit nucleoporin binding also fail to affect Tap shuttling. Together, these data indicate that Tap belongs to a novel class of RNA export factors that can target bound RNA molecules directly to the nuclear pore without the assistance of an importin β-like cofactor. In addition to nucleoporins, Tap has also been proposed to interact with a cellular cofactor termed p15. Although we were able to confirm that Tap can indeed bind p15 specifically both in vivo and in vitro, a mutation in Tap that blocked p15 binding only modestly inhibited CTE-dependent nuclear RNA export. However, p15 did significantly enhance the affinity of Tap for the CTE in vitro and readily formed a ternary complex with Tap on the CTE. This result suggests that p15 may play a significant role in the recruitment of the Tap nuclear export factor to target RNA molecules in vivo.


1998 ◽  
Vol 140 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Michael J. Matunis ◽  
Jian Wu ◽  
Günter Blobel

RanGAP1 is the GTPase-activating protein for Ran, a small ras-like GTPase involved in regulating nucleocytoplasmic transport. In vertebrates, RanGAP1 is present in two forms: one that is cytoplasmic, and another that is concentrated at the cytoplasmic fibers of nuclear pore complexes (NPCs). The NPC-associated form of RanGAP1 is covalently modified by the small ubiquitin-like protein, SUMO-1, and we have recently proposed that SUMO-1 modification functions to target RanGAP1 to the NPC. Here, we identify the domain of RanGAP1 that specifies SUMO-1 modification and demonstrate that mutations in this domain that inhibit modification also inhibit targeting to the NPC. Targeting of a heterologous protein to the NPC depended on determinants specifying SUMO-1 modification and also on additional determinants in the COOH-terminal domain of RanGAP1. SUMO-1 modification and these additional determinants were found to specify interaction between the COOH-terminal domain of RanGAP1 and a region of the nucleoporin, Nup358, between Ran-binding domains three and four. Together, these findings indicate that SUMO-1 modification targets RanGAP1 to the NPC by exposing, or creating, a Nup358 binding site in the COOH-terminal domain of RanGAP1. Surprisingly, the COOH-terminal domain of RanGAP1 was also found to harbor a nuclear localization signal. This nuclear localization signal, and the presence of nine leucine-rich nuclear export signal motifs, suggests that RanGAP1 may shuttle between the nucleus and the cytoplasm.


2010 ◽  
Vol 189 (7) ◽  
pp. 1079-1086 ◽  
Author(s):  
Jayati Sengupta ◽  
Cyril Bussiere ◽  
Jesper Pallesen ◽  
Matthew West ◽  
Arlen W. Johnson ◽  
...  

The nucleocytoplasmic shuttling protein Nmd3 is an adaptor for export of the 60S ribosomal subunit from the nucleus. Nmd3 binds to nascent 60S subunits in the nucleus and recruits the export receptor Crm1 to facilitate passage through the nuclear pore complex. In this study, we present a cryoelectron microscopy (cryo-EM) reconstruction of the 60S subunit in complex with Nmd3 from Saccharomyces cerevisiae. The density corresponding to Nmd3 is directly visible in the cryo-EM map and is attached to the regions around helices 38, 69, and 95 of the 25S ribosomal RNA (rRNA), the helix 95 region being adjacent to the protein Rpl10. We identify the intersubunit side of the large subunit as the binding site for Nmd3. rRNA protection experiments corroborate the structural data. Furthermore, Nmd3 binding to 60S subunits is blocked in 80S ribosomes, which is consistent with the assigned binding site on the subunit joining face. This cryo-EM map is a first step toward a molecular understanding of the functional role and release mechanism of Nmd3.


2006 ◽  
Vol 17 (2) ◽  
pp. 931-943 ◽  
Author(s):  
Lyne Lévesque ◽  
Yeou-Cherng Bor ◽  
Leah H. Matzat ◽  
Li Jin ◽  
Stephen Berberoglu ◽  
...  

Interactions between transport receptors and phenylalanine-glycine (FG) repeats on nucleoporins drive the translocation of receptor-cargo complexes through nuclear pores. Tap, a transport receptor that mediates nuclear export of cellular mRNAs, contains a UBA-like and NTF2-like folds that can associate directly with FG repeats. In addition, two nuclear export sequences (NESs) within the NTF2-like region can also interact with nucleoporins. The Tap-RNA complex was shown to bind to three nucleoporins, Nup98, p62, and RanBP2, and these interactions were enhanced by Nxt1. Mutations in the Tap-UBA region abolished interactions with all three nucleoporins, whereas the effect of point mutations within the NTF2-like domain of Tap known to disrupt Nxt1 binding or nucleoporin binding were nucleoporin dependent. A mutation in any of these Tap domains was sufficient to reduce RNA export but was not sufficient to disrupt Tap interaction with the NPC in vivo or its nucleocytoplasmic shuttling. However, shuttling activity was reduced or abolished by combined mutations within the UBA and either the Nxt1-binding domain or NESs. These data suggest that Tap requires both the UBA- and NTF2-like domains to mediate the export of RNA cargo, but can move through the pores independently of these domains when free of RNA cargo.


1998 ◽  
Vol 18 (11) ◽  
pp. 6805-6815 ◽  
Author(s):  
Jens Solsbacher ◽  
Patrick Maurer ◽  
F. Ralf Bischoff ◽  
Gabriel Schlenstedt

ABSTRACT Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin α binds to the NLS and to importin β, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin β. The importin subunits are exported separately. We investigated the role of Cse1p, theSaccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin α). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin β accumulated in nuclei ofcse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1059-1059
Author(s):  
Inbal Hazan-Halevy ◽  
David Harris ◽  
Zhiming Liu ◽  
Alessandra Ferrajoli ◽  
Michael J Keating ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the Western hemisphere. Although several chromosomal and molecular abnormalities have been identified in CLL cells in recent years, the pathogenesis of CLL is still poorly understood. Signal transducer and activator of transcription 3 (STAT3) plays a major role in cellular physiology. Upon exposure to cytokines or growth factors, STAT3 is tyrosine-phosphorylated, migrates to the nucleus, and binds to DNA. Constitutive phosphorylation of STAT3 on tyrosine 705 residues has been found in several solid tumors and hematologic malignancies. Remarkably, CLL is the only disease in which STAT3 is constitutively phosphorylated (p) on serine rather than tyrosine residues (Frank et al. JCI100:3149, 1997). We have recently discovered that serine pSTAT3 translocates to the nucleus, binds to DNA, activates transcription, and plays a major role in the pathogenensis of CLL. Little is known about the transport mechanisms utilized by STAT molecules in fresh leukemia cells, and no data are available on the transport mechanism of serine pSTAT3. Therefore, we sought to identify the nucleocytoplasmic transport system of serine pSTAT3 in CLL cells. In other cellular systems, importin-α3 or -α6 binds to the nuclear localization signal in STAT3, the N terminus of importin-α is directly recognized by importin-β1, and the complex consisting of STAT3, importin-α3 and improtin-β1 transits through the nuclear pore complexes (NPC). To identify which nucleocytoplasmic transport mechanism of serine pSTAT3 is operative in CLL cells, we performed a series of immunoprecipitation experiments with antibodies to STAT3 and importin-β1. We found that STAT3 co-immunoprecipitated with importin-β1 in whole cell, cytoplasmic, and nuclear extracts. We could not determine which member of the importin-α family binds serine pSTAT3 to form a complex with importin-β1 because none of the investigated α-importins (importin-α1, -α3, -α5, -α6, and -α7) co-immunoprecipitated with STAT3. Similar results were obtained when importin-β1 was immunoprecipitated. Unlike the studied α-importins, serine pSTAT3 and STAT3 co-immunoprecipitated with importin-β1. Thus, either an α-importin binds serine pSTAT3 but failed to co-immunoprecipitate, or an unidentified transporter binds serine pSTAT3. After establishing that importin-β1 translocates serine pSTAT3 to the nucleus, we sought to identify the nuclear export mechanism. The established nuclear export mechanism of STAT3 consists of CRM1 that binds to the nuclear export signal on STAT3 and exports STAT3 through the NPC. Using an identical experimental design, we immunoprecipitated whole cell, cytoplasmic, and nuclear extracts with anti-CRM1 antibodies and found that STAT3 and serine pSTAT3 co-immunoprecipitated with CRM1. Then, we immunoprecipitated the cell extracts with anti-STAT3 antibodies. In these experiments, CRM1 co-immunoprecipitated with STAT3. To further elucidate the role of CRM1 in the STAT3 nuclear export system, we incubated CLL cells with increasing concentrations of the CRM1 inhibitor leptomycin B and assessed STAT3 protein levels in nuclear extracts by Western immunoblotting. We found that leptomycin B increased the accumulation of STAT3 in the nucleus in a dose dependent manner, further confirming that CRM1 exports STAT3 from the nucleus to the cytoplasm. Taken together, our data demonstrate for the first time that in CLL cells STAT3 and serine pSTAT3 are transported into the nucleus by importin-β1 and exported by CRM1. Targeting this nuclear trafficking system might provide a new therapeutic strategy for the treatment of CLL.


1996 ◽  
Vol 133 (6) ◽  
pp. 1141-1152 ◽  
Author(s):  
U Zabel ◽  
V Doye ◽  
H Tekotte ◽  
R Wepf ◽  
P Grandi ◽  
...  

The amino-terminal domain of Nic96p physically interacts with the Nsp1p complex which is involved in nucleocytoplasmic transport. Here we show that thermosensitive mutations mapping in the central domain of Nic96p inhibit nuclear pore formation at the nonpermissive temperature. Furthermore, the carboxyterminal domain of Nic96p functionally interacts with a novel nucleoporin Nup188p in an allele-specific fashion, and when ProtA-Nup188p was affinity purified, a fraction of Nic96p was found in physical interaction. Although NUP188 is not essential for viability, a null mutant exhibits striking abnormalities in nuclear envelope and nuclear pore morphology. We propose that Nic96p is a multivalent protein of the nuclear pore complex linked to several nuclear pore proteins via its different domains.


1995 ◽  
Vol 131 (6) ◽  
pp. 1699-1713 ◽  
Author(s):  
M K Iovine ◽  
J L Watkins ◽  
S R Wente

Nup116p is a member of a family of five yeast nuclear pore complex (NPC) proteins that share an amino terminal region of repetitive tetrapeptide "GLFG" motifs. Previous experiments characterized the unique morphological perturbations that occur in a nup116 null mutant: temperature-sensitive formation of nuclear envelope seals over the cytoplasmic face of the NPC (Wente, S. R., and G. Blobel. 1993. J. Cell Biol. 123:275-284). Three approaches have been taken to dissect the structural basis for Nup116p's role in NPC function. First, deletion mutagenesis analysis of NUP116 revealed that the GLFG region was required for NPC function. This was not true for the other four yeast GLFG family members (Nup49p, Nup57p, Nup100p, and Nup145p). Moreover, deletion of either half of Nup116p's GLFG repeats or replacement of Nup116p's GLFG region with either Nup100p's GLFG region or Nsp1p's FXFG repetitive region abolishes the function of Nup116p. At a semipermissive growth temperature, the cells lacking Nup116p's GLFG region displayed a diminished capacity for nuclear import. Second, overexpression of Nup116p's GLFG region severely inhibited cell growth, rapidly blocked polyadenylated-RNA export, and fragmented the nucleolus. Although it inhibited nuclear export, the overexpressed GLFG region appeared predominantly localized in the cytoplasm and NPC/nuclear envelope structure was not perturbed in thin section electron micrographs. Finally, using biochemical and two-hybrid analysis, an interaction was characterized between Nup116p's GLFG region and Kap95p, an essential yeast homologue of the vertebrate nuclear import factor p97/Imp90/karopherin beta. These data show that Nup116p's GLFG region has an essential role in mediating nuclear transport.


2016 ◽  
Vol 27 (17) ◽  
pp. 2742-2756 ◽  
Author(s):  
Biplab Paul ◽  
Ben Montpetit

Many protein factors are required for mRNA biogenesis and nuclear export, which are central to the eukaryotic gene expression program. It is unclear, however, whether all factors have been identified. Here we report on a screen of >1000 essential gene mutants in Saccharomyces cerevisiae for defects in mRNA processing and export, identifying 26 mutants with defects in this process. Single-molecule FISH data showed that the majority of these mutants accumulated mRNA within specific regions of the nucleus, which included 1) mRNAs within the nucleolus when nucleocytoplasmic transport, rRNA biogenesis, or RNA processing and surveillance was disrupted, 2) the buildup of mRNAs near transcription sites in 3′-end processing and chromosome segregation mutants, and 3) transcripts being enriched near nuclear pore complexes when components of the mRNA export machinery were mutated. These data show that alterations to various nuclear processes lead to the retention of mRNAs at discrete locations within the nucleus.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lindsey R Hayes ◽  
Lauren Duan ◽  
Kelly Bowen ◽  
Petr Kalab ◽  
Jeffrey D Rothstein

Disruption of nucleocytoplasmic transport is increasingly implicated in the pathogenesis of neurodegenerative diseases, including ALS caused by a C9orf72 hexanucleotide repeat expansion. However, the mechanism(s) remain unclear. Karyopherins, including importin β and its cargo adaptors, have been shown to co-precipitate with the C9orf72 arginine-containing dipeptide repeat proteins (R-DPRs), poly-glycine arginine (GR) and poly-proline arginine (PR), and are protective in genetic modifier screens. Here, we show that R-DPRs interact with importin β, disrupt its cargo loading, and inhibit nuclear import of importin β, importin α/β, and transportin cargoes in permeabilized mouse neurons and HeLa cells, in a manner that can be rescued by RNA. Although R-DPRs induce widespread protein aggregation in this in vitro system, transport disruption is not due to nucleocytoplasmic transport protein sequestration, nor blockade of the phenylalanine-glycine (FG)-rich nuclear pore complex. Our results support a model in which R-DPRs interfere with cargo loading on karyopherins.


Sign in / Sign up

Export Citation Format

Share Document