scholarly journals Structure of African Swine Fever Virus Late Promoters: Requirement of a TATA Sequence at the Initiation Region

2000 ◽  
Vol 74 (17) ◽  
pp. 8176-8182 ◽  
Author(s):  
Ramón García-Escudero ◽  
Eladio Viñuela

ABSTRACT A number of mutations, including deletions, linker scan substitutions, and point mutations, were performed in the promoter of the late African swine fever virus (ASFV) gene coding for the capsid protein p72. The consequences of the mutations in terms of promoter activity were analyzed by luciferase assays using plasmids transfected into infected cells. The results showed that the promoter function is contained between nucleotides −36 and +5 relative to the transcription initiation site. Moreover, two major essential regions for promoter activity, centered at positions −13 and +3, were located along the 41-bp sequence, the latter mapping in the transcription start site. Sequence alignment with other ASFV late promoters showed homology in the region of transcriptional initiation, where the presence of the sequence TATA was observed in most of the promoters. Substitution of these four residues in three other late viral promoters strongly reduced their respective activities. These results show thatcis-acting control elements of ASFV p72 gene transcription are restricted to a short sequence of about 40 bp and suggest that transcription of late genes is initiated around a TATA sequence that would function as an initiator element.

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2046
Author(s):  
Xueliang Liu ◽  
Da Ao ◽  
Sen Jiang ◽  
Nengwen Xia ◽  
Yulin Xu ◽  
...  

African swine fever (ASF) is mainly an acute hemorrhagic disease which is highly contagious and lethal to domestic pigs and wild boars. The global pig industry has suffered significant economic losses due to the lack of an effective vaccine and treatment. The African swine fever virus (ASFV) has a large genome of 170–190 kb, encoding more than 150 proteins. During infection, ASFV evades host innate immunity via multiple viral proteins. A528R is a very important member of the polygene family of ASFV, which was shown to inhibit IFN-β production by targeting NF-κB, but its mechanism is not clear. This study has shown that A528R can suppress the TLR8-NF-κB signaling pathway, including the inhibition of downstream promoter activity, NF-κB p65 phosphorylation and nuclear translocation, and the antiviral and antibacterial activity. Further, we found the cellular co-localization and interaction between A528R and p65, and ANK repeat domains of A528R and RHD of p65 are involved in their interaction and the inhibition of p65 activity. Therefore, we conclude that A528R inhibits TLR8-NF-κB signaling by targeting p65 activation and nuclear translocation.


2020 ◽  
Vol 23 (04) ◽  
pp. 21-26
Author(s):  
A.K. Sibgatullova ◽  
◽  
M.E. Vlasov ◽  
I.A. Titov ◽  
◽  
...  

1990 ◽  
Vol 64 (5) ◽  
pp. 2064-2072 ◽  
Author(s):  
J M Almendral ◽  
F Almazán ◽  
R Blasco ◽  
E Viñuela

2021 ◽  
pp. 105081
Author(s):  
Zhao Huang ◽  
Lang Gong ◽  
Zezhong Zheng ◽  
Qi Gao ◽  
Xiongnan Chen ◽  
...  

Author(s):  
Tao Wang ◽  
Liang Wang ◽  
Yu Han ◽  
Li Pan ◽  
Jing Yang ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 757
Author(s):  
Sandra Barroso-Arévalo ◽  
Jose A. Barasona ◽  
Estefanía Cadenas-Fernández ◽  
José M. Sánchez-Vizcaíno

African swine fever virus (ASFv) is one of the most challenging pathogens to affect both domestic and wild pigs. The disease has now spread to Europe and Asia, causing great damage to the pig industry. Although no commercial vaccine with which to control the disease is, as yet, available, some potential vaccine candidates have shown good results in terms of protection. However, little is known about the host immune mechanisms underlying that protection, especially in wild boar, which is the main reservoir of the disease in Europe. Here, we study the role played by two cytokines (IL-10 and IFN-γ) in wild boar orally inoculated with the attenuated vaccine candidate Lv17/WB/Rie1 and challenged with a virulent ASFv genotype II isolate. A group of naïve wild boar challenged with the latter isolate was also established as a control group. Our results showed that both cytokines play a key role in protecting the host against the challenge virus. While high levels of IL-10 in serum may trigger an immune system malfunctioning in challenged animals, the provision of stable levels of this cytokine over time may help to control the disease. This, together with high and timely induction of IFN-γ by the vaccine candidate, could help protect animals from fatal outcomes. Further studies should be conducted in order to support these preliminary results and confirm the role of these two cytokines as potential markers of the evolution of ASFV infection.


Sign in / Sign up

Export Citation Format

Share Document