scholarly journals Stabilization but Not the Transcriptional Activity of Herpes Simplex Virus VP16-Induced Complexes Is Evolutionarily Conserved among HCF Family Members

2001 ◽  
Vol 75 (24) ◽  
pp. 12402-12411 ◽  
Author(s):  
Soyoung Lee ◽  
Winship Herr

ABSTRACT The human herpes simplex virus (HSV) protein VP16 induces formation of a transcriptional regulatory complex with two cellular factors—the POU homeodomain transcription factor Oct-1 and the cell proliferation factor HCF-1—to activate viral immediate-early-gene transcription. Although the cellular role of Oct-1 in transcription is relatively well understood, the cellular role of HCF-1 in cell proliferation is enigmatic. HCF-1 and the related protein HCF-2 form an HCF protein family in humans that is related to a Caenorhabditis elegans homolog called CeHCF. In this study, we show that all three proteins can promote VP16-induced-complex formation, indicating that VP16 targets a highly conserved function of HCF proteins. The resulting VP16-induced complexes, however, display different transcriptional activities. In contrast to HCF-1 and CeHCF, HCF-2 fails to support VP16 activation of transcription effectively. These results suggest that, along with HCF-1, HCF-2 could have a role, albeit probably a different role, in HSV infection. CeHCF can mimic HCF-1 for both association with viral and cellular proteins and transcriptional activation, suggesting that the function(s) of HCF-1 targeted by VP16 has been highly conserved throughout metazoan evolution.

2001 ◽  
Vol 21 (14) ◽  
pp. 4700-4712 ◽  
Author(s):  
Robert Babb ◽  
C. Chris Huang ◽  
Deborah J. Aufiero ◽  
Winship Herr

ABSTRACT Upon infection, the herpes simplex virus (HSV) transcriptional activator VP16 directs the formation of a multiprotein-DNA complex—the VP16-induced complex—with two cellular proteins, the host cell factor HCF-1 and the POU domain transcription factor Oct-1, on TAATGARAT-containing sequences found in the promoters of HSV immediate-early genes. HSV VP16 contains carboxy-terminal sequences important for transcriptional activation and a central conserved core that is important for VP16-induced complex assembly. On its own, VP16 displays little, if any, sequence-specific DNA-binding activity. We show here that, within the VP16-induced complex, however, the VP16 core has an important role in DNA binding. Mutation of basic residues on the surface of the VP16 core reveals a novel DNA-binding surface with essential residues which are conserved among VP16 orthologs. These results illuminate how, through association with DNA, VP16 is able to interpret cis-regulatory signals in the DNA to direct the assembly of a multiprotein-DNA transcriptional regulatory complex.


1994 ◽  
Vol 14 (5) ◽  
pp. 3484-3493
Author(s):  
T J Wu ◽  
G Monokian ◽  
D F Mark ◽  
C R Wobbe

VP16 is a herpes simplex virus (HSV)-encoded transcriptional activator protein that is essential for efficient viral replication and as such may be a target for novel therapeutic agents directed against viral gene expression. We have reconstituted transcriptional activation by VP16 in an in vitro system that is dependent on DNA sequences from HSV immediate-early gene promoters and on protein-protein interactions between VP16 and Oct-1 that are required for VP16 activation in vivo. Activation increased synergistically with the number of TAATGARAT elements (the cis-acting element for VP16 activation in vivo) upstream of the core promoter, and mutations of this element that reduce Oct-1 or VP16 DNA binding reduced transactivation in vitro. A VP16 insertion mutant unable to interact with Oct-1 was inactive, but, surprisingly, a deletion mutant lacking the activation domain was approximately 65% as active as the full-length protein. The activation domains of Oct-1 were necessary for activation in reactions containing the VP16 deletion mutant, and they contributed significantly to activation by full-length VP16. Addition of a GA-rich element present in many HSV immediate-early gene enhancers synergistically stimulated VP16-activated transcription. Finally, oligopeptides that are derived from a region of VP16 thought to contact a cellular factor known as HCF (host cell factor) and that inhibit efficient VP16 binding to the TAATGARAT element also specifically inhibited VP16-activated, but not basal, transcription. Amino acid substitutions in one of these peptides identified three residues that are absolutely required for inhibition and presumably for interaction of VP16 with HCF.


1994 ◽  
Vol 14 (5) ◽  
pp. 3484-3493 ◽  
Author(s):  
T J Wu ◽  
G Monokian ◽  
D F Mark ◽  
C R Wobbe

VP16 is a herpes simplex virus (HSV)-encoded transcriptional activator protein that is essential for efficient viral replication and as such may be a target for novel therapeutic agents directed against viral gene expression. We have reconstituted transcriptional activation by VP16 in an in vitro system that is dependent on DNA sequences from HSV immediate-early gene promoters and on protein-protein interactions between VP16 and Oct-1 that are required for VP16 activation in vivo. Activation increased synergistically with the number of TAATGARAT elements (the cis-acting element for VP16 activation in vivo) upstream of the core promoter, and mutations of this element that reduce Oct-1 or VP16 DNA binding reduced transactivation in vitro. A VP16 insertion mutant unable to interact with Oct-1 was inactive, but, surprisingly, a deletion mutant lacking the activation domain was approximately 65% as active as the full-length protein. The activation domains of Oct-1 were necessary for activation in reactions containing the VP16 deletion mutant, and they contributed significantly to activation by full-length VP16. Addition of a GA-rich element present in many HSV immediate-early gene enhancers synergistically stimulated VP16-activated transcription. Finally, oligopeptides that are derived from a region of VP16 thought to contact a cellular factor known as HCF (host cell factor) and that inhibit efficient VP16 binding to the TAATGARAT element also specifically inhibited VP16-activated, but not basal, transcription. Amino acid substitutions in one of these peptides identified three residues that are absolutely required for inhibition and presumably for interaction of VP16 with HCF.


2001 ◽  
Vol 21 (11) ◽  
pp. 3820-3829 ◽  
Author(s):  
Joanna Wysocka ◽  
Patrick T. Reilly ◽  
Winship Herr

ABSTRACT Human HCF-1 is a large, highly conserved, and abundant nuclear protein that plays an important but unknown role in cell proliferation. It also plays a role in activation of herpes simplex virus immediate-early gene transcription by the viral regulatory protein VP16. A single proline-to-serine substitution in the HCF-1 VP16 interaction domain causes a temperature-induced arrest of cell proliferation in hamster tsBN67 cells and prevents transcriptional activation by VP16. We show here that HCF-1 is naturally bound to chromatin in uninfected cells through its VP16 interaction domain. HCF-1 is chromatin bound in tsBN67 cells at permissive temperature but dissociates from chromatin before tsBN67 cells stop proliferating at the nonpermissive temperature, suggesting that loss of HCF-1 chromatin association is the primary cause of the temperature-induced tsBN67 cell proliferation arrest. We propose that the role of HCF-1 in cell proliferation is to regulate gene transcription by associating with a multiplicity of DNA-bound transcription factors through its VP16 interaction domain.


2001 ◽  
Vol 120 (5) ◽  
pp. A136-A137
Author(s):  
K TSAMAKIDES ◽  
E PANOTOPOULOU ◽  
D DIMITROULOPOULOS ◽  
M CHRISTOPOULO ◽  
D XINOPOULOS ◽  
...  

1985 ◽  
Vol 5 (8) ◽  
pp. 1997-2008 ◽  
Author(s):  
N A DeLuca ◽  
P A Schaffer

To better define the activities on herpes simplex virus type 1 gene expression of temperature-sensitive and wild-type forms of the transcriptional regulatory protein ICP4, regulatory sequences from immediate-early, early, and late herpes simplex virus genes were fused to the gene for chloramphenicol acetyltransferase (CAT). These constructs were used in trans induction and cotransfection experiments with wild-type and temperature-sensitive mutant alleles of ICP4. The ICP4 genes used in this study were cloned from the KOS strain (wild type) and two phenotypically distinct temperature-sensitive ICP4 mutants, tsB32 and tsL14 (DeLuca et al., J. Virol. 52:767-776, 1984), both alone and in conjunction with three other immediate-early genes. The latter series of plasmids was used to assess the influence of additional immediate-early gene products on gene expression in the presence of a given ICP4 allele. The results of this study demonstrate that the phenotypes of these ICP4 mutants observed in cell culture at the nonpermissive temperature were determined in part by activities associated with the mutant ICP4 polypeptides and that these activities differed from those of wild-type ICP4. Low levels of wild-type ICP4 had a marginal but reproducible stimulatory effect on immediate-early CAT gene expression, especially the pIE4/5CAT chimera. This effect was diminished with increasing quantities of ICP4, suggesting an inhibitory role for the wild-type form of the protein. The ICP4 mutants had a strong stimulatory effect on immediate-early CAT expression, consistent with their phenotypes at 39 degrees C. The mutant forms of the ICP4 polypeptide differed in their ability to induce CAT activity from an early chimeric gene. Thus, the tsL14 form of ICP4 was effective in early gene induction (i.e., ptkCAT was induced), whereas the ICP4 derived from tsB32 was slightly inhibitory. Cotransfection of tsB32 ICP4 simultaneously with other immediate-early genes resulted in a marginal increase in ptkCAT induction. This induction was enhanced when the gene for ICP4 was inactivated by restriction enzyme cleavage, substantiating the inhibitory effect of the tsB32 form of ICP4. The two mutant ICP4 genes (tsB32 and tsL14) were unable to trans-activate either of the late CAT constructs (p5CAT and pL42CAT) tested. Cotransfecting tsL14 ICP4 with the other immediate-early genes resulted in activation of p5CAT but not pL42CAT. Taken together, these studies demonstrate that (i) low levels of wild-type ICP4 have stimulatory effect on immediate-early promoters and that higher concentrations of wild-type ICP4 have an inhibitory effect on these promoters, (ii) isolated mutant form of ICP4 exhibit activities that reflect the phenotypes of the mutants from which they were isolated, and (iii) immediate-early gene products other than ICP4 are involved in determining the distinct phenotypes of the two mutants at 39 degrees Celsius.


2016 ◽  
Vol 90 (19) ◽  
pp. 8621-8633 ◽  
Author(s):  
Elizabeth Sloan ◽  
Anne Orr ◽  
Roger D. Everett

ABSTRACTWe previously reported that MORC3, a protein associated with promyelocytic leukemia nuclear bodies (PML NBs), is a target of herpes simplex virus 1 (HSV-1) ICP0-mediated degradation (E. Sloan, et al., PLoS Pathog11:e1005059, 2015,http://dx.doi.org/10.1371/journal.ppat.1005059). Since it is well known that certain other components of the PML NB complex play an important role during an intrinsic immune response to HSV-1 and are also degraded or inactivated by ICP0, here we further investigate the role of MORC3 during HSV-1 infection. We demonstrate that MORC3 has antiviral activity during HSV-1 infection and that this antiviral role is counteracted by ICP0. In addition, MORC3's antiviral role extends to wild-type (wt) human cytomegalovirus (HCMV) infection, as its plaque-forming efficiency increased in MORC3-depleted cells. We found that MORC3 is recruited to sites associated with HSV-1 genomes after their entry into the nucleus of an infected cell, and in wt infections this is followed by its association with ICP0 foci prior to its degradation. The RING finger domain of ICP0 was required for degradation of MORC3, and we confirmed that no other HSV-1 protein is required for the loss of MORC3. We also found that MORC3 is required for fully efficient recruitment of PML, Sp100, hDaxx, and γH2AX to sites associated with HSV-1 genomes entering the host cell nucleus. This study further unravels the intricate ways in which HSV-1 has evolved to counteract the host immune response and reveals a novel function for MORC3 during the host intrinsic immune response.IMPORTANCEHerpesviruses have devised ways to manipulate the host intrinsic immune response to promote their own survival and persistence within the human population. One way in which this is achieved is through degradation or functional inactivation of PML NB proteins, which are recruited to viral genomes in order to repress viral transcription. Because MORC3 associates with PML NBs in uninfected cells and is a target for HSV-1-mediated degradation, we investigated the role of MORC3 during HSV-1 infection. We found that MORC3 is also recruited to viral HSV-1 genomes, and importantly it contributes to the fully efficient recruitment of PML, hDaxx, Sp100, and γH2AX to these sites. Depletion of MORC3 resulted in an increase in ICP0-null HSV-1 and wt HCMV replication and plaque formation; therefore, this study reveals that MORC3 is an antiviral factor which plays an important role during HSV-1 and HCMV infection.


Sign in / Sign up

Export Citation Format

Share Document