scholarly journals The Central Conserved Cystine Noose of the Attachment G Protein of Human Respiratory Syncytial Virus Is Not Required for Efficient Viral Infection In Vitro or In Vivo

2002 ◽  
Vol 76 (12) ◽  
pp. 6164-6171 ◽  
Author(s):  
Michael N. Teng ◽  
Peter L. Collins

ABSTRACT The G glycoprotein of human respiratory syncytial virus (RSV) was identified previously as the viral attachment protein. Although we and others recently showed that G is not essential for replication in vitro, it does affect the efficiency of replication in a cell type-dependent fashion and is required for efficient replication in vivo. The ectodomain of G is composed of two heavily glycosylated domains with mucin-like characteristics that are separated by a short central region that is relatively devoid of glycosylation sites. This central region contains a 13-amino acid segment that is conserved in the same form among RSV isolates and is overlapped by a second segment containing four cysteine residues whose spacings are conserved in the same form and which create a cystine noose. The conserved nature of the cystine noose and flanking 13-amino acid segment suggested that this region likely was important for attachment activity. To test this hypothesis, we constructed recombinant RSVs from which the region containing the cysteine residues was deleted together with part or all of the conserved 13-amino acid segment. Surprisingly, each deletion had little or no effect on the intracellular synthesis and processing of the G protein, the kinetics or efficiency of virus replication in vitro, or sensitivity to neutralization by soluble heparin in vitro. In addition, neither deletion had any discernible effect on the ability of RSV to infect the upper respiratory tract of mice and both resulted in a 3- to 10-fold reduction in the lower respiratory tract. Thus, although the G protein is necessary for efficient virus replication in vivo, this activity does not require the central conserved cystine noose region.

2002 ◽  
Vol 76 (21) ◽  
pp. 10776-10784 ◽  
Author(s):  
Bin Lu ◽  
Chien-Hui Ma ◽  
Robert Brazas ◽  
Hong Jin

ABSTRACT The phosphoprotein (P protein) of respiratory syncytial virus (RSV) is a key component of the viral RNA-dependent RNA polymerase complex. The protein is constitutively phosphorylated at the two clusters of serine residues (116, 117, and 119 [116/117/119] and 232 and 237 [232/237]). To examine the role of phosphorylation of the RSV P protein in virus replication, these five serine residues were altered to eliminate their phosphorylation potential, and the mutant proteins were analyzed for their functions with a minigenome assay. The reporter gene expression was reduced by 20% when all five phosphorylation sites were eliminated. Mutants with knockout mutations at two phosphorylation sites (S232A/S237A [PP2]) and at five phosphorylation sites (S116L/S117R/S119L/S232A/S237A [PP5]) were introduced into the infectious RSV A2 strain. Immunoprecipitation of 33Pi-labeled infected cells showed that P protein phosphorylation was reduced by 80% for rA2-PP2 and 95% for rA2-PP5. The interaction between the nucleocapsid (N) protein and P protein was reduced in rA2-PP2- and rA2-PP5-infected cells by 30 and 60%, respectively. Although the two recombinant viruses replicated well in Vero cells, rA2-PP2 and, to a greater extent, rA2-PP5, replicated poorly in HEp-2 cells. Virus budding from the infected HEp-2 cells was affected by dephosphorylation of P protein, because the majority of rA2-PP5 remained cell associated. In addition, rA2-PP5 was also more attenuated than rA2-PP2 in replication in the respiratory tracts of mice and cotton rats. Thus, our data suggest that although the major phosphorylation sites of RSV P protein are dispensable for virus replication in vitro, phosphorylation of P protein is required for efficient virus replication in vitro and in vivo.


1998 ◽  
Vol 188 (10) ◽  
pp. 1967-1972 ◽  
Author(s):  
Paul W. Tebbey ◽  
Michael Hagen ◽  
Gerald E. Hancock

We analyzed the immune responses evoked by a series of overlapping peptides to better understand the molecular basis for respiratory syncytial virus (RSV) G protein–induced eosinophilia in BALB/c mice. In vitro stimulation of spleen cells from natural G protein–primed mice showed dominant proliferative and cytokine (interferon [IFN]-γ and interleukin [IL]-5) responses to a peptide encompassing amino acids 184–198. Mice vaccinated with peptide 184– 198 conjugated to keyhole limpet hemocyanin showed significant pulmonary eosinophilia (39.5%) after challenge with live RSV. In contrast, mice immunized with a peptide (208–222) conjugate associated with induction of IFN-γ secreting spleen cells did not exhibit pulmonary eosinophilia after challenge. The in vivo depletion of CD4+ cells abrogated pulmonary eosinophilia in mice vaccinated with the peptide 184–198 conjugate, whereas the depletion of CD8+ cells had a negligible effect. Therefore, we have identified an association between peptide 184– 198 of natural G protein and the CD4+ T cell–mediated induction of pulmonary eosinophilia after live RSV challenge. Out of 43 human donors, 6 provided peripheral blood mononuclear cells that showed reactivity to G protein from RSV A2, 3 of which responded to peptide 184– 198. The results have important implications for the development of a vaccine against RSV.


2021 ◽  
Author(s):  
Li-Nan Wang ◽  
Xiang-Lei Peng ◽  
Min Xu ◽  
Yuan-Bo Zheng ◽  
Yue-Ying Jiao ◽  
...  

AbstractHuman respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5′ to 3′) a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 548
Author(s):  
Kiramage Chathuranga ◽  
Asela Weerawardhana ◽  
Niranjan Dodantenna ◽  
Lakmal Ranathunga ◽  
Won-Kyung Cho ◽  
...  

Sargassum fusiforme, a plant used as a medicine and food, is regarded as a marine vegetable and health supplement to improve life expectancy. Here, we demonstrate that S. fusiforme extract (SFE) has antiviral effects against respiratory syncytial virus (RSV) in vitro and in vivo mouse model. Treatment of HEp2 cells with a non-cytotoxic concentration of SFE significantly reduced RSV replication, RSV-induced cell death, RSV gene transcription, RSV protein synthesis, and syncytium formation. Moreover, oral inoculation of SFE significantly improved RSV clearance from the lungs of BALB/c mice. Interestingly, the phenolic compounds eicosane, docosane, and tetracosane were identified as active components of SFE. Treatment with a non-cytotoxic concentration of these three components elicited similar antiviral effects against RSV infection as SFE in vitro. Together, these results suggest that SFE and its potential components are a promising natural antiviral agent candidate against RSV infection.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ruchi Jain ◽  
Shanmughavel Piramanayagam

HRSV (human respiratory syncytial virus) is a serious cause of lower respiratory tract illness in infants and young children. Designing inhibitors from the proteins involved in virus replication and infection process provides target for new therapeutic treatments. In the present study,in silicodocking was performed using motavizumab as a template to design motavizumab derived oligopeptides for developing novel anti-HRSV agents. Additional simulations were conducted to study the conformational propensities of the oligopeptides and confirmed the hypothesis that the designed oligopeptide is highly flexible and capable of assuming stable confirmation. Our study demonstrated the best specific interaction of GEKKLVEAPKS oligopeptide for glycoprotein strain A among various screened oligopeptides. Encouraged by the results, we expect that the proposed scheme will provide rational choices for antibody reengineering which is useful for systematically identifying the possible ways to improve efficacy of existing antibody drugs.


2009 ◽  
Vol 5 (1) ◽  
pp. e1000254 ◽  
Author(s):  
Viviane F. Botosso ◽  
Paolo M. de A. Zanotto ◽  
Mirthes Ueda ◽  
Eurico Arruda ◽  
Alfredo E. Gilio ◽  
...  

2006 ◽  
Vol 80 (23) ◽  
pp. 11651-11657 ◽  
Author(s):  
Xiaodong Zhao ◽  
Enmei Liu ◽  
Fu-Ping Chen ◽  
Wayne M. Sullender

ABSTRACT Respiratory syncytial virus (RSV) is the only infectious disease for which a monoclonal antibody (MAb) is used in humans. Palivizumab (PZ) is a humanized murine MAb to the F protein of RSV. PZ-resistant viruses appear after in vitro and in vivo growth of RSV in the presence of PZ. Fitness for replication could be a determinant of the likelihood of dissemination of resistant viruses. We assessed the fitness of two PZ-resistant viruses (F212 and MP4). F212 grew less well in cell culture than the parent A2 virus and was predicted to be less fit than A2. Equal amounts of F212 and A2 were mixed and passaged in cell culture. F212 disappeared from the viral population, indicating it was less fit than the A2 virus. The MP4 virus grew as well as A2 in culture and in cotton rats. A2/MP4 virus input ratios of 1:1, 10:1, 100:1, and 1,000:1 were compared in competitive replication. For all input ratios except 1,000:1, the MP4 virus became dominant, supplanting the A2 virus. The MP4 virus also dominated the A2 virus during growth in cotton rats. Thus, the mutant MP4 virus was more fit than A2 virus in both in vitro and in vivo competitive replication. Whether this fitness difference was due to the identified nucleotide substitutions in the F gene or to mutations elsewhere in the genome is unknown. Understanding the mechanisms by which mutant virus fitness increased or decreased could prove useful for consideration in attenuated vaccine design efforts.


2020 ◽  
Vol 101 (10) ◽  
pp. 1056-1068
Author(s):  
Linda J. Rennick ◽  
Sham Nambulli ◽  
Ken Lemon ◽  
Grace Y. Olinger ◽  
Nicholas A. Crossland ◽  
...  

Human respiratory syncytial virus (HRSV) is an important respiratory pathogen causing a spectrum of illness, from common cold-like symptoms, to bronchiolitis and pneumonia requiring hospitalization in infants, the immunocompromised and the elderly. HRSV exists as two antigenic subtypes, A and B, which typically cycle biannually in separate seasons. There are many unresolved questions in HRSV biology regarding the interactions and interplay of the two subtypes. Therefore, we generated a reverse genetics system for a subtype A HRSV from the 2011 season (A11) to complement our existing subtype B reverse genetics system. We obtained the sequence (HRSVA11) directly from an unpassaged clinical sample and generated the recombinant (r) HRSVA11. A version of the virus expressing enhanced green fluorescent protein (EGFP) from an additional transcription unit in the fifth (5) position of the genome, rHRSVA11EGFP(5), was also generated. rHRSVA11 and rHRSVA11EGFP(5) grew comparably in cell culture. To facilitate animal co-infection studies, we derivatized our subtype B clinical isolate using reverse genetics toexpress the red fluorescent protein (dTom)-expressing rHRSVB05dTom(5). These viruses were then used to study simultaneous in vivo co-infection of the respiratory tract. Following intranasal infection, both rHRSVA11EGFP(5) and rHRSVB05dTom(5) infected cotton rats targeting the same cell populations and demonstrating that co-infection occurs in vivo. The implications of this finding on viral evolution are important since it shows that inter-subtype cooperativity and/or competition is feasible in vivo during the natural course of the infection.


Sign in / Sign up

Export Citation Format

Share Document