scholarly journals Characterization of Human Immunodeficiency Virus Type 1 (HIV-1) Gag- and Gag Peptide-Specific CD4+ T-Cell Clones from an HIV-1-Seronegative Donor following In Vitro Immunization

2002 ◽  
Vol 76 (14) ◽  
pp. 6987-6999 ◽  
Author(s):  
Sara Venturini ◽  
Donald E. Mosier ◽  
Dennis R. Burton ◽  
Pascal Poignard

ABSTRACT Substantial evidence argues that human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cells play an important role in the control of HIV-1 replication in infected individuals. Moreover, it is increasingly clear that an HIV vaccine should elicit potent cytotoxic lymphocyte and antibody responses that will likely require an efficient CD4+ T-cell response. Therefore, understanding and characterizing HIV-specific CD4+ T-cell responses is an important aim. Here we describe the generation of HIV-1 Gag- and Gag peptide-specific CD4+ T-cell clones from an HIV-1-seronegative donor by in vitro immunization with HIV-1 Gag peptides. The Gag peptides were able to induce a strong CD4+ T-cell immune response in peripheral blood mononuclear cells from the HIV-1-seronegative donor. Six Gag peptide-specific CD4+ T-cell clones were isolated and their epitopes were mapped. The region of p24 between amino acids 201 and 300 of Gag was defined as the immunodominant region of Gag. A new T helper epitope in the p6 protein of Gag was identified. Two clones were shown to recognize Gag peptides and processed Gag protein, while the other four clones reacted only to Gag peptides under the experimental conditions used. Functional analysis of the clones indicated that both Th1 and Th2 types of CD4+ T cells were obtained. One clone showed direct antigen-specific cytotoxic activity. These clones represent a valuable tool for understanding the cellular immune response to HIV-1, and the study provides new insights into the HIV-1-specific CD4+ T-cell response and the induction of an anti-Gag and -Gag peptide cellular primary immune response in vitro.

2009 ◽  
Vol 83 (15) ◽  
pp. 7668-7677 ◽  
Author(s):  
Nan Zheng ◽  
Mamoru Fujiwara ◽  
Takamasa Ueno ◽  
Shinichi Oka ◽  
Masafumi Takiguchi

ABSTRACT A restricted number of studies have shown that human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic CD4+ T cells are present in HIV-1-infected individuals. However, the roles of this type of CD4+ T cell in the immune responses against an HIV-1 infection remain unclear. In this study, we identified novel Nef epitope-specific HLA-DRB1*0803-restricted cytotoxic CD4+ T cells. The CD4+ T-cell clones specific for Nef187-203 showed strong gamma interferon production after having been stimulated with autologous B-lymphoblastoid cells infected with recombinant vaccinia virus expressing Nef or pulsed with heat-inactivated virus particles, indicating the presentation of the epitope antigen through both exogenous and endogenous major histocompatibility complex class II processing pathways. Nef187-203-specific CD4+ T-cell clones exhibited strong cytotoxic activity against both HIV-1-infected macrophages and CD4+ T cells from an HLA-DRB1*0803+ donor. In addition, these Nef-specific cytotoxic CD4+ T-cell clones exhibited strong ability to suppress HIV-1 replication in both macrophages and CD4+ T cells in vitro. Nef187-203-specific cytotoxic CD4+ T cells were detected in cultures of peptide-stimulated peripheral blood mononuclear cells (PBMCs) and in ex vivo PBMCs from 40% and 20% of DRB1*0803+ donors, respectively. These results suggest that HIV-1-specific CD4+ T cells may directly control HIV-1 infection in vivo by suppressing virus replication in HIV-1 natural host cells.


1998 ◽  
Vol 72 (1) ◽  
pp. 876-881 ◽  
Author(s):  
Kunal Saha ◽  
Galina Bentsman ◽  
Leonard Chess ◽  
David J. Volsky

ABSTRACT Recent studies have demonstrated that the β-chemokines RANTES, MIP-1α, and MIP-1β suppress human immunodeficiency virus type 1 (HIV-1) replication in vitro and may play an important role in protecting exposed but uninfected individuals from HIV-1 infection. However, levels of β-chemokines in AIDS patients are comparable to and can exceed levels in nonprogressing individuals, indicating that global β-chemokine production may have little effect on HIV-1 disease progression. We sought to clarify the role of β-chemokines in nonprogressors and AIDS patients by examination of β-chemokine production and HIV-1 infection in patient T-lymphocyte clones established by herpesvirus saimiri immortalization. Both CD4+ and CD8+ clones were established, and they resembled primary T cells in their phenotypes and expression of activated T-cell markers. CD4+ T-cell clones from all patients had normal levels of mRNA-encoding CCR5, a coreceptor for non-syncytium-inducing (NSI) HIV-1. CD4+ clones from nonprogressors and CD8+ clones from AIDS patients secreted high levels of RANTES, MIP1α, and MIP-1β. In contrast, CD4+ clones from AIDS patients produced no RANTES and little or no MIP-1α or MIP-1β. The infection of CD4+clones with the NSI HIV-1 strain ADA revealed an inverse correlation to β-chemokine production; clones from nonprogressors were poorly susceptible to ADA replication, but clones from AIDS patients were highly infectable. The resistance to ADA infection in CD4+clones from nonprogressors could be partially reversed by treatment with anti-β-chemokine antibodies. These results indicate that CD4+ cells can be protected against NSI-HIV-1 infection in culture through endogenously produced factors, including β-chemokines, and that β-chemokine production by CD4+, but not CD8+, T cells may constitute one mechanism of disease-free survival for HIV-1-infected individuals.


2003 ◽  
Vol 77 (1) ◽  
pp. 291-300 ◽  
Author(s):  
L. Musey ◽  
Y. Ding ◽  
J. Cao ◽  
J. Lee ◽  
C. Galloway ◽  
...  

ABSTRACT Induction of adaptive immunity to human immunodeficiency virus type 1 (HIV-1) at the mucosal site of transmission is poorly understood but crucial in devising strategies to control and prevent infection. To gain further understanding of HIV-1-specific T-cell mucosal immunity, we established HIV-1-specific CD8+ cytotoxic T-lymphocyte (CTL) cell lines and clones from the blood, cervix, rectum, and semen of 12 HIV-1-infected individuals and compared their specificities, cytolytic function, and T-cell receptor (TCR) clonotypes. Blood and mucosal CD8+ CTL had common HIV-1 epitope specificities and major histocompatibility complex restriction patterns. Moreover, both systemic and mucosal CTL lysed targets with similar efficiency, primarily through the perforin-dependent pathway in in vitro studies. Sequence analysis of the TCRβ VDJ region revealed in some cases identical HIV-1-specific CTL clones in different compartments in the same HIV-1-infected individual. These results clearly establish that a subset of blood and mucosal HIV-1-specific CTL can have a common origin and can traffic between anatomically distinct compartments. Thus, these effectors can provide immune surveillance at the mucosa, where rapid responses are needed to contain HIV-1 infection.


2015 ◽  
Vol 89 (8) ◽  
pp. 4449-4456 ◽  
Author(s):  
Sumiti Jain ◽  
Matthew T. Trivett ◽  
Victor I. Ayala ◽  
Claes Ohlen ◽  
David E. Ott

ABSTRACTThe expression of xenogeneic TRIM5α proteins can restrict infection in various retrovirus/host cell pairings. Previously, we have shown that African green monkey TRIM5α (AgmTRIM5α) potently restricts both human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus mac239 (SIVmac239) replication in a transformed human T-cell line (L. V. Coren, et al., Retrovirology 12:11, 2015,http://dx.doi.org/10.1186/s12977-015-0137-9). To assess AgmTRIM5α restriction in primary cells, we transduced AgmTRIM5α into primary rhesus macaque CD4 T cells and infected them with SIVmac239. Experiments with T-cell clones revealed that AgmTRIM5α could reproducibly restrict SIVmac239replication, and that this restriction synergizes with an intrinsic resistance to infection present in some CD4 T-cell clones. AgmTRIM5α transduction of virus-specific CD4 T-cell clones increased and prolonged their ability to suppress SIV spread in CD4 target cells. This increased antiviral function was strongly linked to decreased viral replication in the AgmTRIM5α-expressing effectors, consistent with restriction preventing the virus-induced cytopathogenicity that disables effector function. Taken together, our data show that AgmTRIM5α restriction, although not absolute, reduces SIV replication in primary rhesus CD4 T cells which, in turn, increases their antiviral function. These results support priorin vivodata indicating that the contribution of virus-specific CD4 T-cell effectors to viral control is limited due to infection.IMPORTANCEThe potential of effector CD4 T cells to immunologically modulate SIV/HIV infection likely is limited by their susceptibility to infection and subsequent inactivation or elimination. Here, we show that AgmTRIM5α expression inhibits SIV spread in primary effector CD4 T cellsin vitro. Importantly, protection of effector CD4 T cells by AgmTRIM5α markedly enhanced their antiviral function by delaying SIV infection, thereby extending their viability despite the presence of virus. Ourin vitrodata support priorin vivoHIV-1 studies suggesting that the antiviral CD4 effector response is impaired due to infection and subsequent cytopathogenicity. The ability of AgmTRIM5α expression to restrict SIV infection in primary rhesus effector CD4 T cells now opens an opportunity to use the SIV/rhesus macaque model to further elucidate the potential and scope of anti-AIDS virus effector CD4 T-cell function.


2008 ◽  
Vol 83 (2) ◽  
pp. 540-551 ◽  
Author(s):  
Andreas Mörner ◽  
Iyadh Douagi ◽  
Mattias N. E. Forsell ◽  
Christopher Sundling ◽  
Pia Dosenovic ◽  
...  

ABSTRACT Currently there is limited information about the quality of immune responses elicited by candidate human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env)-based immunogens in primates. Here we describe a comprehensive analysis of neutralizing antibody and T-cell responses obtained in cynomolgus macaques by three selected immunization regimens. We used the previously described YU2-based gp140 protein trimers administered in an adjuvant, preceded by two distinct priming strategies: either alphavirus replicon particles expressing matched gp140 trimers or gp120 core proteins stabilized in the CD4-bound conformation. The rationale for priming with replicon particles was to evaluate the impact of the expression platform on trimer immunogenicity. The stable core proteins were chosen in an attempt to expand selectively lymphocytes recognizing common determinants between the core and trimers to broaden the immune response. The results presented here demonstrate that the platform by which Env trimers were delivered in the priming (either protein or replicon vector) had little impact on the overall immune response. In contrast, priming with stable core proteins followed by a trimer boost strikingly focused the T-cell response on the core sequences of HIV-1 Env. The specificity of the T-cell response was distinctly different from that of the responses obtained in animals immunized with trimers alone and was shown to be mediated by CD4+ T cells. However, this regimen showed limited or no improvement in the neutralizing antibody responses, suggesting that further immunogen design efforts are required to successfully focus the B-cell response on conserved neutralizing determinants of HIV-1 Env.


2003 ◽  
Vol 77 (20) ◽  
pp. 11220-11231 ◽  
Author(s):  
Hanne Gahéry-Ségard ◽  
Gilles Pialoux ◽  
Suzanne Figueiredo ◽  
Céline Igéa ◽  
Mathieu Surenaud ◽  
...  

ABSTRACT We studied the effect of booster injections and the long-term immune response after injections of an anti-human immunodeficiency virus type 1 (HIV-1) lipopeptide vaccine. This vaccine was injected alone or with QS21 adjuvant to 28 HIV-uninfected volunteers. One month later, after a fourth injection of the vaccine, B- and T-cell anti-HIV responses were detected in >85% of the vaccinated volunteers. One year after this injection, a long-term immune response was observed in >50% of the volunteers. At this point, a positive QS21 effect was observed only in the sustained B-cell and CD4+-T-cell responses. To better characterize the CD8+-T-cell response, we used a gamma interferon enzyme-linked immunospot method and a bank of 59 HIV-1 epitopes. For the six most common HLA molecules (HLA-A2, -A3, -A11, -A24, -B7 superfamily, and -B8), an average of 10 (range, 3 to 15) HIV-1 epitopes were tested. CD8+-T-cell responses were evaluated according to the HLA class I molecules of the volunteers. Each assessment was based on 18 HIV-1 epitopes in average. We showed that 31 HIV-1 epitopes elicited specific CD8+-T-cell responses after vaccination. The most frequently recognized peptides were Nef 68-76 (-B7), Nef 71-79 (-B7), Nef 84-92 (-A11), Nef 135-143 (-B7), Nef 136-145 (-A2), Nef 137-145 (-A2), Gag 259-267 (-B8), Gag 260-268 (-A2), Gag 267-274 (-A2), Gag 267-277 (-B7), and Gag 276-283 (A24). We found that CD8+-T-cell epitopes were induced at a higher number after a fourth injection (P < 0.05 compared to three injections), which indicates an increase in the breadth of HIV CD8+-T-cell epitope recognition after the boost.


2000 ◽  
Vol 74 (14) ◽  
pp. 6689-6694 ◽  
Author(s):  
Alessandra Borsetti ◽  
Cristina Parolin ◽  
Barbara Ridolfi ◽  
Leonardo Sernicola ◽  
Andrea Geraci ◽  
...  

ABSTRACT The infection of CD4-negative cells by variants of tissue culture-adapted human immunodeficiency virus type 1 (HIV-1) or HIV-2 strains has been shown to be mediated by the CXCR4 coreceptor. Here we show that two in vitro-established CD4−/CCR5−/CXCR4+ human pre-T-cell lines (A3 and A5) can be productively infected by wild-type laboratory-adapted T-cell-tropic HIV-1 and HIV-2 strains in a CD4-independent, CXCR4-dependent fashion. Despite the absence of CCR5 expression, A3 and A5 cells were susceptible to infection by the simian immunodeficiency viruses SIVmac239 and SIVmac316. Thus, at least in A3 and A5 cells, one or more of the chemokine receptors can efficiently support the entry of HIV and SIV isolates in the absence of CD4. These findings suggest that to infect cells of different compartments, HIV and SIV could have evolved in vivo to bypass CD4 and to interact directly with an alternative receptor.


2009 ◽  
Vol 83 (15) ◽  
pp. 7649-7658 ◽  
Author(s):  
J. Judy Chang ◽  
Sunee Sirivichayakul ◽  
Anchalee Avihingsanon ◽  
Alex J. V. Thompson ◽  
Peter Revill ◽  
...  

ABSTRACT Hepatits B virus (HBV)-specific T cells play a key role both in the control of HBV replication and in the pathogenesis of liver disease. Human immunodeficiency virus type 1 (HIV-1) coinfection and the presence or absence of HBV e (precore) antigen (HBeAg) significantly alter the natural history of chronic HBV infection. We examined the HBV-specific T-cell responses in treatment-naïve HBeAg-positive and HBeAg-negative HIV-1-HBV-coinfected (n = 24) and HBV-monoinfected (n = 39) Asian patients. Peripheral blood was stimulated with an overlapping peptide library for the whole HBV genome, and tumor necrosis factor alpha and gamma interferon cytokine expression in CD8+ T cells was measured by intracellular cytokine staining and flow cytometry. There was no difference in the overall magnitude of the HBV-specific T-cell responses, but the quality of the response was significantly impaired in HIV-1-HBV-coinfected patients compared with monoinfected patients. In coinfected patients, HBV-specific T cells rarely produced more than one cytokine and responded to fewer HBV proteins than in monoinfected patients. Overall, the frequency and quality of the HBV-specific T-cell responses increased with a higher CD4+ T-cell count (P = 0.018 and 0.032, respectively). There was no relationship between circulating HBV-specific T cells and liver damage as measured by activity and fibrosis scores, and the HBV-specific T-cell responses were not significantly different in patients with either HBeAg-positive or HBeAg-negative disease. The quality of the HBV-specific T-cell response is impaired in the setting of HIV-1-HBV coinfection and is related to the CD4+ T-cell count.


2004 ◽  
Vol 78 (22) ◽  
pp. 12638-12646 ◽  
Author(s):  
Eli Boritz ◽  
Brent E. Palmer ◽  
Cara C. Wilson

ABSTRACT Diminished in vitro proliferation of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cells has been associated with HIV-1 viremia and declining CD4+ T-cell counts during chronic infection. To better understand this phenomenon, we examined whether HIV-1 Gag p24 antigen-induced CD4+ T-cell proliferation might recover in vitro in a group of subjects with chronic HIV-1 viremia and no history of antiretroviral therapy (ART). We found that depletion of CD8+ cells from peripheral blood mononuclear cells (PBMC) before antigen stimulation was associated with a 6.5-fold increase in the median p24-induced CD4+ T-cell proliferative response and a 57% increase in the number of subjects with positive responses. These p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC were associated with expansion of the numbers of p24-specific, gamma interferon (IFN-γ)-producing CD4+ T cells. Among the 20 viremic, treatment-naïve subjects studied, the only 5 subjects lacking proliferation-competent, p24-specific CD4+ T-cell responses from CD8-depleted PBMC showed plasma HIV-1 RNA levels > 100,000 copies/ml. Furthermore, both the magnitude of p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC and the frequency of p24-specific, IFN-γ-producing CD4+ T cells expanded from CD8-depleted PBMC were associated inversely with plasma HIV-1 RNA levels. Therefore, proliferation-competent, HIV-1-specific CD4+ T cells that might help control HIV-1 disease may persist during chronic, progressive HIV-1 disease except at very high levels of in vivo HIV-1 replication.


Sign in / Sign up

Export Citation Format

Share Document