scholarly journals Selective Loss of Innate CD4+ Vα24 Natural Killer T Cells in Human Immunodeficiency Virus Infection

2002 ◽  
Vol 76 (15) ◽  
pp. 7528-7534 ◽  
Author(s):  
Johan K. Sandberg ◽  
Noam M. Fast ◽  
Emil H. Palacios ◽  
Glenn Fennelly ◽  
Joanna Dobroszycki ◽  
...  

ABSTRACT Vα24 natural killer T (NKT) cells are innate immune cells involved in regulation of immune tolerance, autoimmunity, and tumor immunity. However, the effect of human immunodeficiency virus type 1 (HIV-1) infection on these cells is unknown. Here, we report that the Vα24 NKT cells can be subdivided into CD4+ or CD4− subsets that differ in their expression of the homing receptors CD62L and CD11a. Furthermore, both CD4+ and CD4− NKT cells frequently express both CXCR4 and CCR5 HIV coreceptors. We find that the numbers of NKT cells are reduced in HIV-infected subjects with uncontrolled viremia and marked CD4+ T-cell depletion. The number of CD4+ NKT cells is inversely correlated with HIV load, indicating depletion of this subset. In contrast, CD4− NKT-cell numbers are unaffected in subjects with high viral loads. HIV infection experiments in vitro show preferential depletion of CD4+ NKT cells relative to regular CD4+ T cells, in particular with virus that uses the CCR5 coreceptor. Thus, HIV infection causes a selective loss of CD4+ lymph node homing (CD62L+) NKT cells, with consequent skewing of the NKT-cell compartment to a predominantly CD4− CD62L− phenotype. These data indicate that the key immunoregulatory NKT-cell compartment is compromised in HIV-1-infected patients.

2002 ◽  
Vol 195 (7) ◽  
pp. 869-879 ◽  
Author(s):  
Alison Motsinger ◽  
David W. Haas ◽  
Aleksandar K. Stanic ◽  
Luc Van Kaer ◽  
Sebastian Joyce ◽  
...  

Human natural killer (NK) T cells are unique T lymphocytes that express an invariant T cell receptor (TCR) Vα24-Vβ11 and have been implicated to play a role in various diseases. A subset of NKT cells express CD4 and hence are potential targets for human immunodeficiency virus (HIV)-1 infection. We demonstrate that both resting and activated human Vα24+ T cells express high levels of the HIV-1 coreceptors CCR5 and Bonzo (CXCR6), but low levels of CCR7, as compared with conventional T cells. Remarkably NKT cells activated with α-galactosylceramide (α-GalCer)-pulsed dendritic cells were profoundly more susceptible to infection with R5-tropic, but not X4-tropic, strains of HIV-1, compared with conventional CD4+ T cells. Furthermore, resting CD4+ NKT cells were also more susceptible to infection. After initial infection, HIV-1 rapidly replicated and depleted the CD4+ subset of NKT cells. In addition, peripheral blood NKT cells were markedly and selectively depleted in HIV-1 infected individuals. Although the mechanisms of this decline are not clear, low numbers or absence of NKT cells may affect the course of HIV-1 infection. Taken together, our findings indicate that CD4+ NKT cells are directly targeted by HIV-1 and may have a potential role during viral transmission and spread in vivo.


2005 ◽  
Vol 79 (5) ◽  
pp. 3195-3199 ◽  
Author(s):  
Jean-Daniel Lelièvre ◽  
Frédéric Petit ◽  
Damien Arnoult ◽  
Jean-Claude Ameisen ◽  
Jérôme Estaquier

ABSTRACT Fas-mediated T-cell death is known to occur during human immunodeficiency virus (HIV) infection. In this study, we found that HIV type 1 LAI (HIV-1LAI) primes CD8+ T cells from healthy donors for apoptosis, which occurs after Fas ligation. This effect is counteracted by a broad caspase inhibitor (zVAD-fmk). Fas-mediated cell death does not depend on CD8+ T-cell infection, because it occurred in the presence of reverse transcriptase inhibitors. However, purified CD8+ T cells are sensitive to Fas only in the presence of soluble CD4. Finally, we found that interleukin 7 (IL-7) increases Fas-mediated CD4+ and CD8+ T-cell death induced by HIV-1LAI. Since high levels of IL-7 are a marker of poor prognosis during HIV infection, our data suggest that enhancement of Fas-mediated T-cell death by HIV-1LAI and IL-7 is one of the mechanisms involved in progression to AIDS.


2001 ◽  
Vol 75 (13) ◽  
pp. 6173-6182 ◽  
Author(s):  
Mark T. Esser ◽  
David R. Graham ◽  
Lori V. Coren ◽  
Charles M. Trubey ◽  
Julian W. Bess ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV) infection results in a functional impairment of CD4+ T cells long before a quantitative decline in circulating CD4+ T cells is evident. The mechanism(s) responsible for this functional unresponsiveness and eventual depletion of CD4+ T cells remains unclear. Both direct effects of cytopathic infection of CD4+ cells and indirect effects in which uninfected “bystander” cells are functionally compromised or killed have been implicated as contributing to the immunopathogenesis of HIV infection. Because T-cell receptor engagement of major histocompatibility complex (MHC) molecules in the absence of costimulation mediated via CD28 binding to CD80 (B7-1) or CD86 (B7-2) can lead to anergy or apoptosis, we determined whether HIV type 1 (HIV-1) virions incorporated MHC class I (MHC-I), MHC-II, CD80, or CD86. Microvesicles produced from matched uninfected cells were also evaluated. HIV infection increased MHC-II expression on T- and B-cell lines, macrophages, and peripheral blood mononclear cells (PBMC) but did not significantly alter the expression of CD80 or CD86. HIV virions derived from all MHC-II-positive cell types incorporated high levels of MHC-II, and both virions and microvesicles preferentially incorporated CD86 compared to CD80. CD45, expressed at high levels on cells, was identified as a protein present at high levels on microvesicles but was not detected on HIV-1 virions. Virion-associated, host cell-derived molecules impacted the ability of noninfectious HIV virions to trigger death in freshly isolated PBMC. These results demonstrate the preferential incorporation or exclusion of host cell proteins by budding HIV-1 virions and suggest that host cell proteins present on HIV-1 virions may contribute to the overall pathogenesis of HIV-1 infection.


2020 ◽  
Vol 222 (9) ◽  
pp. 1550-1560 ◽  
Author(s):  
Xianbao He ◽  
Jared J Eddy ◽  
Karen R Jacobson ◽  
Andrew J Henderson ◽  
Luis M Agosto

Abstract Background Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) coinfection increases mortality, accelerates progression to acquired immune deficiency syndrome, and exacerbates tuberculosis disease. However, the impact of pre-existing Mtb infection on subsequent HIV infection has not been fully explored. We hypothesized that Mtb infection creates an immunological environment that influences the course of HIV infection, and we investigated whether pre-existing Mtb infection impacts the susceptibility of CD4+ T cells to HIV-1 infection. Methods Plasma and blood CD4+ T cells isolated from HIV-negative individuals across the Mtb infection spectrum and non-Mtb-infected control individuals were analyzed for inflammation markers and T-cell phenotypes. CD4+ T cells were infected with HIV-1 in vitro and were monitored for viral replication. Results We observed differences in proinflammatory cytokines and the relative proportion of memory T-cell subsets depending on Mtb infection status. CD4+ T cells derived from individuals with latent Mtb infection supported more efficient HIV-1 transcription, release, and replication. Enhanced HIV-1 replication correlated with higher percentages of CD4+ TEM and TTD cells. Conclusions Pre-existing Mtb infection creates an immunological environment that reflects Mtb infection status and influences the susceptibility of CD4+ T cells to HIV-1 replication. These findings provide cellular and molecular insights into how pre-existing Mtb infection influences HIV-1 pathogenesis.


2003 ◽  
Vol 77 (14) ◽  
pp. 8153-8158 ◽  
Author(s):  
Alison Motsinger ◽  
Agnes Azimzadeh ◽  
Aleksandar K. Stanic ◽  
R. Paul Johnson ◽  
Luc Van Kaer ◽  
...  

ABSTRACT Natural killer T (NKT) cells express a highly conserved T-cell receptor (TCR) and recognize glycolipids in the context of CD1d molecules. We recently demonstrated that CD4+ NKT cells are highly susceptible to human immunodeficiency virus type 1 (HIV-1) infection and are selectively depleted in HIV-infected individuals. Here, we identified macaque NKT cells using CD1d tetramers and human Vα24 antibodies. Similar to human NKT cells, α-galactosylceramide (α-GalCer)-pulsed dendritic cells activate and expand macaque NKT cells. Upon restimulation with α-GalCer-pulsed CD1d+ cells, macaque NKT cells secreted high levels of cytokines, a characteristic of these T cells. Remarkably, the majority of resting and activated macaque NKT cells expressed CD8, and a smaller portion expressed CD4. Macaque NKT cells also expressed the HIV-1/simian immunodeficiency virus (SIV) coreceptor CCR5, and the CD4+ subset was susceptible to SIV infection. Identification of macaque NKT cells has major implications for delineating the role of these cells in nonhuman primate disease models of HIV as well as other pathological conditions, such as allograft rejection and autoimmunity.


2000 ◽  
Vol 74 (15) ◽  
pp. 6849-6855 ◽  
Author(s):  
Hiroyuki Moriuchi ◽  
Masako Moriuchi ◽  
Anthony S. Fauci

ABSTRACT Neutrophils dominate acute inflammatory responses that generally evolve into chronic inflammatory reactions mediated by monocyte/macrophages and lymphocytes. The latter cell types also serve as major targets for human immunodeficiency virus type 1 (HIV-1). In this study we have investigated the role of neutrophil products, particularly cathepsin G, in HIV infection. Cathepsin G induced chemotaxis and production of proinflammatory cytokines by macrophages but not CD4+ T cells. Pretreatment with cathepsin G markedly increased susceptibility of macrophages but not CD4+ T cells to acute HIV-1 infection. When macrophages were exposed to pertussis toxin prior to cathepsin G treatment, the cathepsin G-mediated effect was almost abrogated, suggesting that enhancement of HIV-1 replication by cathepsin G requires Gi protein-mediated signal transduction. Although prolonged exposure to cathepsin G suppressed HIV infection of macrophages, serine protease inhibitors, which are exuded from the bloodstream later during inflammatory processes, neutralized the inhibitory effect. Neutrophil extracts or supernatants from neutrophil cultures, which contain cathepsin G, had effects similar to purified cathepsin G. Thus, cathepsin G, and possibly other neutrophil-derived serine proteases, may have multiple activities in HIV-1 infection of macrophages, including chemoattraction of monocyte/macrophages (HIV-1 targets) to inflamed tissue, activation of target cells, and increase in their susceptibility to acute HIV-1 infection.


1989 ◽  
Vol 169 (1) ◽  
pp. 327-332 ◽  
Author(s):  
D R Lucey ◽  
D I Dorsky ◽  
A Nicholson-Weller ◽  
P F Weller

The CD4 glycoprotein, expressed on leukocytes belonging to subsets of T lymphocytes and to cells of monocyte/macrophage lineage, participates in the functioning of T cells and serves as a receptor for HIV-1 and HIV-2. Human eosinophils, a class of granulocytic leukocytes, have been found to express CD4. With anti-CD4 mAbs CD4 was demonstrable on eosinophils from both normal and eosinophilic donors. Eosinophils synthesized a 55-kD CD4 polypeptide immunoprecipitable with two anti-CD4 mAbs. Eosinophil CD4 bound HIV-1 gp120 as assessed by competition for anti-OKT4A, but not anti-OKT4, mAb binding. Eosinophils, normally rich in gastrointestinal and genitourinary tract tissues, increase in numbers in patients with metazoan parasitic infections. In these sites and diseases, CD4 expression by eosinophils may be pertinent to their immunologic functions and could make these cells susceptible to HIV infection.


2009 ◽  
Vol 83 (10) ◽  
pp. 5028-5034 ◽  
Author(s):  
Karen A. O'Connell ◽  
Yefei Han ◽  
Thomas M. Williams ◽  
Robert F. Siliciano ◽  
Joel N. Blankson

ABSTRACT Natural killer (NK) cells are associated with the innate immune response and are important in many viral infections. Recent studies indicate that NK cells can control human immunodeficiency virus type 1 (HIV-1) replication. We studied the effect of NK cells on HIV-1 replication in a subpopulation of HIV-1-infected individuals termed elite suppressors (ES) or elite controllers. These patients maintain a clinically undetectable viral load without treatment and thus provide a fascinating cohort in which to study the immunological response to HIV-1. Using an autologous system, we analyzed the effects of NK cells and CD8+ T cells on viral replication in CD4+ T lymphoblasts. Although we had postulated that NK cells of ES would be highly effective at controlling viral replication, we found that NK cells from some, but not all, ES were capable of inhibiting replication in the presence of interleukin-2, and the inhibition was less robust than that mediated by CD8+ T cells. Additionally, we examined whether particular alleles of the KIR receptors, specifically KIR3DS1 and KIR3DL1, or allele-ligand combinations correlated with the control of HIV-1 replication by NK cells and whether any specific KIR alleles were overrepresented in ES. Our ES cohort did not differ from the general population with respect to the frequency of individual KIR. However, of the eight ES studied, the four exhibiting the most NK cell-mediated control of viral replication also had the fewest activating KIR and were haplotype A. Thus, the strong NK cell-mediated inhibition of viral replication is not necessary for the immunological control of HIV-1 in all ES.


2001 ◽  
Vol 75 (23) ◽  
pp. 11555-11564 ◽  
Author(s):  
S. Imlach ◽  
S. McBreen ◽  
T. Shirafuji ◽  
C. Leen ◽  
J. E. Bell ◽  
...  

ABSTRACT There is increasing evidence that CD8 lymphocytes may represent targets for infection by human immunodeficiency virus type 1 (HIV-1) in vivo whose destruction may contribute to the loss of immune function underlying AIDS. HIV-1 may infect thymic precursor cells destined to become CD4 and CD8 lymphocytes and contribute to the numerical decline in both subsets on disease progression. There is also evidence for the induction of CD4 expression and susceptibility to infection by HIV-1 of CD8 lymphocytes activated in vitro. To investigate the relationship between CD8 activation and infection by HIV-1 in vivo, activated subsets of CD8 lymphocytes in peripheral blood mononuclear cells (PBMCs) of HIV-seropositive individuals were investigated for CD4 expression and HIV infection. Activated CD8 lymphocytes were identified by expression of CD69, CD71, and the human leukocyte antigen (HLA) class II, the β-chain of CD8, and the RO isoform of CD45. CD4+ and CD4− CD8 lymphocytes, CD4 lymphocytes, other T cells, and non-T cells were purified using paramagnetic beads, and proviral sequences were quantified by PCR using primers from the long terminal repeat region. Frequencies of activated CD8 lymphocytes were higher in HIV-infected study subjects than in seronegative controls, and they frequently coexpressed CD4 (mean frequencies on CD69+, CD71+, and HLA class II+ cells of 23, 37, and 8%, respectively, compared with 1 to 2% for nonactivated CD8 lymphocytes). The level of CD4 expression of the double-positive population approached that of mature CD4 lymphocytes. That CD4 expression renders CD8 cell susceptible to infection was indicated by their high frequency of infection in vivo; infected CD4+ CD8 lymphocytes accounted for between 3 and 72% of the total proviral load in PBMCs from five of the eight study subjects investigated, despite these cells representing a small component of the PBMC population (<3%). Combined, these findings provide evidence that antigenic stimulation of CD8 lymphocytes in vivo induces CD4 expression that renders them susceptible to HIV infection and destruction. The specific targeting of responding CD8 lymphocytes may provide a functional explanation for the previously observed impairment of cytotoxic T-lymphocyte (CTL) function disproportionate to their numerical decline in AIDS and for the deletion of specific clones of CTLs responding to HIV antigens.


Sign in / Sign up

Export Citation Format

Share Document