scholarly journals Hepatocyte Nuclear Factor 3β Inhibits Hepatitis B Virus Replication In Vivo

2002 ◽  
Vol 76 (24) ◽  
pp. 12974-12980 ◽  
Author(s):  
Krista E. Banks ◽  
Aimee L. Anderson ◽  
Hong Tang ◽  
Douglas E. Hughes ◽  
Robert H. Costa ◽  
...  

ABSTRACT Hepatitis B virus (HBV) transgenic mice expressing rat hepatocyte nuclear factor 3β (HNF3β) were generated by breeding HBV transgenic mice with transgenic mice that constitutively overexpress the rat HNF3β polypeptide in the liver. HBV 3.5-, 2.4- and 2.1-kb transcripts were reduced 2- to 4-fold in these mice relative to the HBV transgenic mouse controls. In contrast, the abundance of viral replication intermediates was profoundly reduced in HBV transgenic mice by overexpression of HNF3β. This results, in part, from the preferential reduction in the level of the pregenomic 3.5-kb RNA relative to the precore 3.5-kb RNA. Therefore, it is apparent that increased expression of HNF3β modestly reduces viral transcription and dramatically inhibits replication in vivo in the HBV transgenic mouse. This suggests that altering the activity of this transcription factor in vivo in chronic HBV carriers might be therapeutically beneficial.

2001 ◽  
Vol 75 (6) ◽  
pp. 2900-2911 ◽  
Author(s):  
Anneke K. Raney ◽  
Carrie M. Eggers ◽  
Eric F. Kline ◽  
Luca G. Guidotti ◽  
Marco Pontoglio ◽  
...  

ABSTRACT The role of hepatocyte nuclear factor 1α (HNF1α) in the regulation of hepatitis B virus (HBV) transcription and replication in vivo was investigated using a HNF1α-null HBV transgenic mouse model. HBV transcription was not measurably affected by the absence of the HNF1α transcription factor. However, intracellular viral replication intermediates were increased two- to fourfold in mice lacking functional HNF1α protein. The increase in encapsidated cytoplasmic replication intermediates in HNF1α-null HBV transgenic mice was associated with the appearance of nonencapsidated nuclear covalently closed circular (CCC) viral genomic DNA. Viral CCC DNA was not readily detected in HNF1α-expressing HBV transgenic mice. This indicates the synthesis of nuclear HBV CCC DNA, the proposed viral transcriptional template found in natural infection, is regulated either by subtle alterations in the levels of viral transcripts or by changes in the physiological state of the hepatocyte in this in vivo model of HBV replication.


1999 ◽  
Vol 73 (12) ◽  
pp. 10377-10386 ◽  
Author(s):  
Luca G. Guidotti ◽  
Carrie M. Eggers ◽  
Anneke K. Raney ◽  
Susan Y. Chi ◽  
Jeffrey M. Peters ◽  
...  

ABSTRACT The role of the peroxisome proliferator-activated receptor α (PPARα) in regulating hepatitis B virus (HBV) transcription and replication in vivo was investigated in an HBV transgenic mouse model. Treatment of HBV transgenic mice with the peroxisome proliferators Wy-14,643 and clofibric acid resulted in a less than twofold increase in HBV transcription rates and steady-state levels of HBV RNAs in the livers of these mice. In male mice, this increase in transcription was associated with a 2- to 3-fold increase in replication intermediates, whereas in female mice it was associated with a 7- to 14-fold increase in replication intermediates. The observed increases in transcription and replication were dependent on PPARα. HBV transgenic mice lacking this nuclear hormone receptor showed similar levels of HBV transcripts and replication intermediates as untreated HBV transgenic mice expressing PPARα but failed to demonstrate alterations in either RNA or DNA synthesis in response to peroxisome proliferators. Therefore, it appears that very modest alterations in transcription can, under certain circumstances, result in relatively large increases in HBV replication in HBV transgenic mice.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaoqin Lv ◽  
Xia Xiang ◽  
Yue Wu ◽  
Yang Liu ◽  
Ruqing Xu ◽  
...  

Abstract Background GATA binding protein 4 (GATA4) has been reported as a potential target of gene therapy for hepatocellular carcinoma (HCC). It is well known that the main cause of HCC is the chronic infection of hepatitis B virus (HBV). However, whether the effect of GATA4 on HBV has not yet been reported. Methods In this study, the regulation of GATA4 on HBV was analyzed in vitro. In turn, the effect of HBV on GATA4 was also observed in vitro, in vivo, and clinical HCC patients. Subsequently, we analyzed whether the effect of GATA4 on HBV was related to hepatocyte nuclear factor 4 alpha (HNF4α) in vitro. Results The results showed that GATA4 significantly promoted the secretion of HBV surface antigen (HBsAg) and HBV e antigen in the cell culture medium, improved the replication of HBV genomic DNA, and increased the level of HBV 3.5 kb pre-genomic RNA and HBV total RNA (P < 0.05). Moreover, it was showed that HBV had no significant effect on GATA4 in vitro and in vivo (P > 0.05). At the same time, GATA4 expression was decreased in 78.9% (15/19) of HCC patients regardless of the HBV and HBsAg status. Among them, there were 76.9% (10/13) in HBV-associated patients with HCC (HBV-HCC), and 83.3% (5/6) in non-HBV-HCC patients. In addition, the expression of HNF4α was also up-regulated or down-regulated accordingly when stimulating or interfering with the expression of GATA4. Furthermore, stimulating the expression of HNF4α could only alleviate the HBsAg level and HBV transcription levels, but had no significant effect on GATA4. Conclusions In summary, this study found that GATA4 has a positive effect on HBV, and the potential pathway may be related to another transcription factor HNF4α that regulates HBV.


2006 ◽  
Vol 80 (3) ◽  
pp. 1405-1413 ◽  
Author(s):  
Zongyi Hu ◽  
Zhensheng Zhang ◽  
Jin Woo Kim ◽  
Ying Huang ◽  
T. Jake Liang

ABSTRACT Hepatitis B virus X (HBX) is essential for the productive infection of hepatitis B virus (HBV) in vivo and has a pleiotropic effect on host cells. We have previously demonstrated that the proteasome complex is a cellular target of HBX, that HBX alters the proteolytic activity of proteasome in vitro, and that inhibition of proteasome leads to enhanced viral replication, suggesting that HBX and proteasome interaction plays a crucial role in the life cycle and pathogenesis of HBV. In the present study, we tested the effect of HBX on the proteasome activities in vivo in a transgenic mouse model in which HBX expression is developmentally regulated by the mouse major urinary promoter in the liver. In addition, microarray analysis was performed to examine the effect of HBX expression on the global gene expression profile of the liver. The results showed that the peptidase activities of the proteasome were reduced in the HBX transgenic mouse liver, whereas the activity of another cellular protease was elevated, suggesting a compensatory mechanism in protein degradation. In the microarray analysis, diverse genes were altered in the HBX mouse livers and the number of genes with significant changes increased progressively with age. Functional clustering showed that a number of genes involved in transcription and cell growth were significantly affected in the HBX mice, possibly accounting for the observed pleiotropic effect of HBX. In particular, insulin-like growth factor-binding protein 1 was down-regulated in the HBX mouse liver. The down-regulation was similarly observed during acute woodchuck hepatitis virus infection. Other changes including up-regulation of proteolysis-related genes may also contribute to the profound alterations of liver functions in HBV infection.


2010 ◽  
Vol 84 (18) ◽  
pp. 9326-9331 ◽  
Author(s):  
Zhensheng Zhang ◽  
Eun Sun ◽  
Jing-hsiung James Ou ◽  
T. Jake Liang

ABSTRACT The X protein (HBX) of the hepatitis B virus (HBV) is essential for HBV productive infection in vivo. Our previous study (Z. Hu, Z. Zhang, E. Doo, O. Coux, A. L. Goldberg, and T. J. Liang, J. Virol. 73:7231-7240, 1999) shows that interaction of HBX with the proteasome complex may underlie the pleiotropic functions of HBX. Previously, we demonstrated that HBX affects hepadnaviral replication through a proteasome-dependent pathway in cell culture models. In the present study, we studied the effect of the proteasome inhibitor MLN-273 in two HBV mouse models. We demonstrated that administration of MLN-273 to transgenic mice containing the replication-competent HBV genome with the defective HBX gene substantially enhanced HBV replication, while the compound had a minor effect on wild-type HBV transgenic mice. Similar results were obtained by using C57BL/6 mice infected with recombinant adenoviruses expressing the replicating HBV genome. Our data suggest that HBV replication is subjected to regulation by cellular proteasome and HBX functions through the inhibition of proteasome activities to enhance HBV replication in vivo.


2000 ◽  
Vol 74 (11) ◽  
pp. 5266-5272 ◽  
Author(s):  
Charles R. Madden ◽  
Milton J. Finegold ◽  
Betty L. Slagle

ABSTRACT Chronic infection with hepatitis B virus (HBV) is one of the major etiological factors in the development of human hepatocellular carcinoma. Transgenic mice that express the HBV X protein (HBx) have previously been shown to be more sensitive to the effects of hepatocarcinogens, although the mechanism for this cofactor role remains unknown. The ability of HBx to inhibit DNA repair in transiently transfected cell lines suggests one possible pathway. In the present study, primary hepatocytes isolated from transgenic mice that possess the HBV X gene under the control of the human α-1-antitrypsin regulatory region (ATX mice) were found to be deficient in their ability to conduct unscheduled DNA synthesis in response to UV-induced DNA damage. In order to measure the impact of HBx expression on DNA repair in vivo, double-transgenic mice that express HBx and possess a bacteriophage lambda transgene were sacrificed at 30, 90, and 240 days of age. Mutation frequency was determined for high-molecular-weight liver DNA of ATX and control mice by functional analysis of the lambda transgene. Expression of HBx did not significantly increase the accumulation of spontaneous mutations. These results are consistent with previous studies of HBx transgenic mice in which no effect of HBx on liver histology was apparent. This new animal model provides a powerful system in which to investigate the in vivo cooperation between HBx expression and environmental carcinogens.


Sign in / Sign up

Export Citation Format

Share Document