scholarly journals Anti-TAR Polyamide Nucleotide Analog Conjugated with a Membrane-Permeating Peptide Inhibits Human Immunodeficiency Virus Type 1 Production

2002 ◽  
Vol 76 (8) ◽  
pp. 3881-3891 ◽  
Author(s):  
Neerja Kaushik ◽  
Amartya Basu ◽  
Paul Palumbo ◽  
Rene L. Myers ◽  
Virendra N. Pandey

ABSTRACT The emergence of drug-resistant variants has posed a significant setback against effective antiviral treatment for human immunodeficiency virus (HIV) infections. The choice of a nonmutable region of the viral genome such as the conserved transactivation response element (TAR element) in the 5′ long terminal repeat (LTR) may potentially be an effective target for drug development. We have earlier demonstrated that a polyamide nucleotide analog (PNA) targeted to the TAR hairpin element, when transfected into cells, can effectively inhibit Tat-mediated transactivation of HIV type 1 (HIV-1) LTR (T. Mayhood et al., Biochemistry 39:11532-11539, 2000). Here we show that this anti-TAR PNA (PNATAR), upon conjugation with a membrane-permeating peptide vector (transportan) retained its affinity for TAR in vitro similar to the unconjugated analog. The conjugate was efficiently internalized into the cells when added to the culture medium. Examination of the functional efficacy of the PNATAR-transportan conjugate in cell culture using luciferase reporter gene constructs resulted in a significant inhibition of Tat-mediated transactivation of HIV-1 LTR. Furthermore, PNATAR-transportan conjugate substantially inhibited HIV-1 production in chronically HIV-1-infected H9 cells. The mechanism of this inhibition appeared to be regulated at the level of transcription. These results demonstrate the efficacy of PNATAR-transportan as a potential anti-HIV agent.

1999 ◽  
Vol 73 (9) ◽  
pp. 7368-7375 ◽  
Author(s):  
Martine Peeters ◽  
Florian Liegeois ◽  
Ndongo Torimiro ◽  
Anke Bourgeois ◽  
Eitel Mpoudi ◽  
...  

ABSTRACT A Cameroonian patient with antibodies reacting simultaneously to human immunodeficiency virus type 1 (HIV-1) group O- and group M-specific V3-loop peptides was identified. In order to confirm that this patient was coinfected with both viruses, PCRs with O- and M-specific discriminating primers corresponding to different regions of the genome were carried out with both primary lymphocyte DNA and the corresponding viral strains isolated from three consecutive patient samples. The PCR data suggested that this patient is coinfected with a group M virus and a recombinant M/O virus. Indeed, only type Mgag sequences could be amplified, while for theenv region, both type M and O sequences were amplified, from plasma or from DNA extracted from primary lymphocytes. Sequence analysis of a complete recombinant genome isolated from the second sample (97CA-MP645 virus isolate) revealed two intergroup breakpoints, one in the vpr gene and the second in the long terminal repeat region around the TATA box. Comparison of the type M sequences shared by the group M and the recombinant M/O viruses showed that these sequences were closely related, with only 3% genetic distance, suggesting that the M virus was one of the parental viruses. In this report we describe for the first time a recombination event in vivo between viruses belonging to two different groups, leading to a replicative virus. Recombination between strains with such distant lineages (65% overall homology) may contribute substantially to the emergence of new HIV-1 variants. We documented that this virus replicates well and became predominant in vitro. At this time, group O viruses represent a minority of the strains responsible for the HIV-1 pandemic. If such recombinant intergroup viruses gained better fitness, inducing changes in their biological properties compared to the parental group O virus, the prevalences of group O sequences could increase rapidly. This will have important implications for diagnosis of HIV-1 infections by serological and molecular tests, as well as for antiviral treatment.


2000 ◽  
Vol 74 (18) ◽  
pp. 8767-8770 ◽  
Author(s):  
Massimo Alfano ◽  
Tatiana Pushkarsky ◽  
Guido Poli ◽  
Michael Bukrinsky

ABSTRACT We have recently demonstrated that the binding subunit (B-oligomer) of pertussis toxin (PTX-B) deactivates CCR5 and inhibits entry of R5 human immunodeficiency virus type 1 (HIV-1) strains in activated primary T lymphocytes (M. Alfano et al., J. Exp. Med. 190:597–605, 1999). We now present evidence that PTX-B also affects a postentry step of HIV-1 replication. While PTX-B inhibited fusion induced by R5 but not that induced by X4 envelopes, it blocked infection of T cells with recombinant HIV-1 particles pseudotyped with R5, X4, and even murine leukemia virus or vesicular stomatitis virus envelopes. It also suppressed HIV-1 RNA synthesis in cultures of infected peripheral blood mononuclear cells when new infections had been inhibited by zidovudine, and it reduced Tat-dependent expression of the luciferase reporter gene controlled by the HIV-1 long terminal repeat (LTR). Surprisingly, PTX-B did not affect expression from the cytomegalovirus promoter, nor did it reduce the basal (Tat-independent) expression from the LTR promoter. These results indicate that PTX-B inhibits HIV-1 infection at both the entry and the postentry stages of viral replication, with the postentry activity specifically affecting transcription or stability of Tat-stimulated HIV-1 mRNAs.


2002 ◽  
Vol 76 (3) ◽  
pp. 1015-1024 ◽  
Author(s):  
Barbara Müller ◽  
Tilo Patschinsky ◽  
Hans-Georg Kräusslich

ABSTRACT The Gag-derived protein p6 of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in the release of virions from the membranes of infected cells. It is presumed that p6 and functionally related proteins from other viruses act as adapters, recruiting cellular factors to the budding site. This interaction is mediated by so-called late domains within the viral proteins. Previous studies had suggested that virus release from the plasma membrane shares elements with the cellular endocytosis machinery. Since protein phosphorylation is known to be a regulatory mechanism in these processes, we have investigated the phosphorylation of HIV-1 structural proteins. Here we show that p6 is the major phosphoprotein of HIV-1 particles. After metabolic labeling of infected cells with [ortho- 32P]phosphate, we found that phosphorylated p6 from infected cells and from virus particles consisted of several forms, suggesting differential phosphorylation at multiple sites. Apparently, phosphorylation occurred shortly before or after the release of p6 from Gag and involved only a minor fraction of the total virion-associated p6 molecules. Phosphoamino acid analysis indicated phosphorylation at Ser and Thr, as well as a trace of Tyr phosphorylation, supporting the conclusion that multiple phosphorylation events do occur. In vitro experiments using purified virus revealed that endogenous or exogenously added p6 was efficiently phosphorylated by virion-associated cellular kinase(s). Inhibition experiments suggested that a cyclin-dependent kinase or a related kinase, most likely ERK2, was involved in p6 phosphorylation by virion-associated enzymes.


2003 ◽  
Vol 77 (1) ◽  
pp. 291-300 ◽  
Author(s):  
L. Musey ◽  
Y. Ding ◽  
J. Cao ◽  
J. Lee ◽  
C. Galloway ◽  
...  

ABSTRACT Induction of adaptive immunity to human immunodeficiency virus type 1 (HIV-1) at the mucosal site of transmission is poorly understood but crucial in devising strategies to control and prevent infection. To gain further understanding of HIV-1-specific T-cell mucosal immunity, we established HIV-1-specific CD8+ cytotoxic T-lymphocyte (CTL) cell lines and clones from the blood, cervix, rectum, and semen of 12 HIV-1-infected individuals and compared their specificities, cytolytic function, and T-cell receptor (TCR) clonotypes. Blood and mucosal CD8+ CTL had common HIV-1 epitope specificities and major histocompatibility complex restriction patterns. Moreover, both systemic and mucosal CTL lysed targets with similar efficiency, primarily through the perforin-dependent pathway in in vitro studies. Sequence analysis of the TCRβ VDJ region revealed in some cases identical HIV-1-specific CTL clones in different compartments in the same HIV-1-infected individual. These results clearly establish that a subset of blood and mucosal HIV-1-specific CTL can have a common origin and can traffic between anatomically distinct compartments. Thus, these effectors can provide immune surveillance at the mucosa, where rapid responses are needed to contain HIV-1 infection.


2013 ◽  
Vol 94 (2) ◽  
pp. 354-359 ◽  
Author(s):  
Esther F. Gijsbers ◽  
Ad C. van Nuenen ◽  
Hanneke Schuitemaker ◽  
Neeltje A. Kootstra

Three men from a proven homosexual human immunodeficiency virus type 1 (HIV-1) transmission cluster showed large variation in their clinical course of infection. To evaluate the effect of evolution of the same viral variant in these three patients, we analysed sequence variation in the capsid protein and determined the impact of the observed variation on viral replication fitness in vitro. Viral gag sequences from all three patients contained a mutation at position 242, T242N or T242S, which have been associated with lower virus replication in vitro. Interestingly, HIV-1 variants from patients with a progressive clinical course of infection developed compensatory mutations within the capsid that restored viral fitness, instead of reversion of the T242S mutation. In HIV-1 variants from patient 1, an HLA-B57+ elite controller, no compensatory mutations emerged during follow-up.


2007 ◽  
Vol 51 (11) ◽  
pp. 4036-4043 ◽  
Author(s):  
Serge Dandache ◽  
Guy Sévigny ◽  
Jocelyn Yelle ◽  
Brent R. Stranix ◽  
Neil Parkin ◽  
...  

ABSTRACT Despite the success of highly active antiretroviral therapy, the current emergence and spread of drug-resistant variants of human immunodeficiency virus (HIV) stress the need for new inhibitors with distinct properties. We designed, produced, and screened a library of compounds based on an original l-lysine scaffold for their potentials as HIV type 1 (HIV-1) protease inhibitors (PI). One candidate compound, PL-100, emerged as a specific and noncytotoxic PI that exhibited potent inhibition of HIV-1 protease and viral replication in vitro (Ki , ∼36 pM, and 50% effective concentration [EC50], ∼16 nM, respectively). To confirm that PL-100 possessed a favorable resistance profile, we performed a cross-resistance study using a panel of 63 viral strains from PI-experienced patients selected for the presence of primary PI mutations known to confer resistance to multiple PIs now in clinical use. The results showed that PL-100 retained excellent antiviral activity against almost all of these PI-resistant viruses and that its performance in this regard was superior to those of atazanavir, amprenavir, indinavir, lopinavir, nelfinavir, and saquinavir. In almost every case, the increase in the EC50 for PL-100 observed with viruses containing multiple mutations in protease was far less than that obtained with the other drugs tested. These data underscore the potential for PL-100 to be used in the treatment of drug-resistant HIV disease and argue for its further development.


1999 ◽  
Vol 43 (8) ◽  
pp. 1835-1844 ◽  
Author(s):  
Jean-Marc de Muys ◽  
Henriette Gourdeau ◽  
Nghe Nguyen-Ba ◽  
Debra L. Taylor ◽  
Parvin S. Ahmed ◽  
...  

ABSTRACT The racemic nucleoside analogue 2′-deoxy-3′-oxa-4′-thiocytidine (dOTC) is in clinical development for the treatment of human immunodeficiency virus (HIV) type 1 (HIV-1) infection. dOTC is structurally related to lamivudine (3TC), but the oxygen and sulfur in the furanosyl ring are transposed. Intracellular metabolism studies showed that dOTC is phosphorylated within cells via the deoxycytidine kinase pathway and that approximately 2 to 5% of dOTC is converted into the racemic triphosphate derivatives, which had measurable half-lives (2 to 3 hours) within cells. Both 5′-triphosphate (TP) derivatives of dOTC were more potent than 3TC-TP at inhibiting HIV-1 reverse transcriptase (RT) in vitro. The Ki values for dOTC-TP obtained against human DNA polymerases α, β, and γ were 5,000-, 78-, and 571-fold greater, respectively, than those for HIV RT (28 nM), indicating a good selectivity for the viral enzyme. In culture experiments, dOTC is a potent inhibitor of primary isolates of HIV-1, which were obtained from antiretroviral drug-naive patients as well as from nucleoside therapy-experienced (3TC- and/or zidovudine [AZT]-treated) patients. The mean 50% inhibitory concentration of dOTC for drug-naive isolates was 1.76 μM, rising to only 2.53 and 2.5 μM for viruses resistant to 3TC and viruses resistant to 3TC and AZT, respectively. This minimal change in activity is in contrast to the more dramatic changes observed when 3TC or AZT was evaluated against these same viral isolates. In tissue culture studies, the 50% toxicity levels for dOTC, which were determined by using [3H]thymidine uptake as a measure of logarithmic-phase cell proliferation, was greater than 100 μM for all cell lines tested. In addition, after 14 days of continuous culture, at concentrations up to 10 μM, no measurable toxic effect on HepG2 cells or mitochondrial DNA replication within these cells was observed. When administered orally to rats, dOTC was well absorbed, with a bioavailability of approximately 77%, with a high proportion (approximately 16.5% of the levels in serum) found in the cerebrospinal fluid.


1999 ◽  
Vol 43 (10) ◽  
pp. 2376-2382 ◽  
Author(s):  
Zhengxian Gu ◽  
Mark A. Wainberg ◽  
Nghe Nguyen-Ba ◽  
Lucille L’Heureux ◽  
Jean-Marc de Muys ◽  
...  

ABSTRACT (−)-β-d-1′,3′-Dioxolane guanosine (DXG) and 2,6-diaminopurine (DAPD) dioxolanyl nucleoside analogues have been reported to be potent inhibitors of human immunodeficiency virus type 1 (HIV-1). We have recently conducted experiments to more fully characterize their in vitro anti-HIV-1 profiles. Antiviral assays performed in cell culture systems determined that DXG had 50% effective concentrations of 0.046 and 0.085 μM when evaluated against HIV-1IIIB in cord blood mononuclear cells and MT-2 cells, respectively. These values indicate that DXG is approximately equipotent to 2′,3′-dideoxy-3′-thiacytidine (3TC) but 5- to 10-fold less potent than 3′-azido-2′,3′-dideoxythymidine (AZT) in the two cell systems tested. At the same time, DAPD was approximately 5- to 20-fold less active than DXG in the anti-HIV-1 assays. When recombinant or clinical variants of HIV-1 were used to assess the efficacy of the purine nucleoside analogues against drug-resistant HIV-1, it was observed that AZT-resistant virus remained sensitive to DXG and DAPD. Virus harboring a mutation(s) which conferred decreased sensitivity to 3TC, 2′,3′-dideoxyinosine, and 2′,3′-dideoxycytidine, such as a 65R, 74V, or 184V mutation in the viral reverse transcriptase (RT), exhibited a two- to fivefold-decreased susceptibility to DXG or DAPD. When nonnucleoside RT inhibitor-resistant and protease inhibitor-resistant viruses were tested, no change in virus sensitivity to DXG or DAPD was observed. In vitro drug combination assays indicated that DXG had synergistic antiviral effects when used in combination with AZT, 3TC, or nevirapine. In cellular toxicity analyses, DXG and DAPD had 50% cytotoxic concentrations of greater than 500 μM when tested in peripheral blood mononuclear cells and a variety of human tumor and normal cell lines. The triphosphate form of DXG competed with the natural nucleotide substrates and acted as a chain terminator of the nascent DNA. These data suggest that DXG triphosphate may be the active intracellular metabolite, consistent with the mechanism by which other nucleoside analogues inhibit HIV-1 replication. Our results suggest that the use of DXG and DAPD as therapeutic agents for HIV-1 infection should be explored.


2003 ◽  
Vol 47 (10) ◽  
pp. 3123-3129 ◽  
Author(s):  
Yasuhiro Koh ◽  
Hirotomo Nakata ◽  
Kenji Maeda ◽  
Hiromi Ogata ◽  
Geoffrey Bilcer ◽  
...  

ABSTRACT We designed, synthesized, and identified UIC-94017 (TMC114), a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) containing a 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF) and a sulfonamide isostere which is extremely potent against laboratory HIV-1 strains and primary clinical isolates (50% inhibitory concentration [IC50], ∼0.003 μM; IC90, ∼0.009 μM) with minimal cytotoxicity (50% cytotoxic concentration for CD4+ MT-2 cells, 74 μM). UIC-94017 blocked the infectivity and replication of each of HIV-1NL4-3 variants exposed to and selected for resistance to saquinavir, indinavir, nelfinavir, or ritonavir at concentrations up to 5 μM (IC50s, 0.003 to 0.029 μM), although it was less active against HIV-1NL4-3 variants selected for resistance to amprenavir (IC50, 0.22 μM). UIC-94017 was also potent against multi-PI-resistant clinical HIV-1 variants isolated from patients who had no response to existing antiviral regimens after having received a variety of antiviral agents. Structural analyses revealed that the close contact of UIC-94017 with the main chains of the protease active-site amino acids (Asp-29 and Asp-30) is important for its potency and wide spectrum of activity against multi-PI-resistant HIV-1 variants. Considering the favorable pharmacokinetics of UIC-94017 when administered with ritonavir, the present data warrant that UIC-94017 be further developed as a potential therapeutic agent for the treatment of primary and multi-PI-resistant HIV-1 infections.


Sign in / Sign up

Export Citation Format

Share Document