scholarly journals Transcriptional Targeting of Lentiviral Vectors by Long Terminal Repeat Enhancer Replacement

2002 ◽  
Vol 76 (8) ◽  
pp. 3996-4007 ◽  
Author(s):  
Francesco Lotti ◽  
Emilio Menguzzato ◽  
Claudia Rossi ◽  
Luigi Naldini ◽  
Laurie Ailles ◽  
...  

ABSTRACT Gene therapy of many genetic diseases requires permanent gene transfer into self-renewing stem cells and restriction of transgene expression to specific progenies. Human immunodeficiency virus (HIV)-derived lentiviral vectors are very effective in transducing rare, nondividing stem cell populations (e.g., hematopoietic stem cells) without altering their long-term repopulation and differentiation capacities. We developed a strategy for transcriptional targeting of lentiviral vectors based on replacing the viral long terminal repeat (LTR) enhancer with cell lineage-specific, genomic control elements. An upstream enhancer (HS2) of the erythroid-specific GATA-1 gene was used to replace most of the U3 region of the LTR, immediately upstream of the HIV type 1 (HIV-1) promoter. The modified LTR was used to drive the expression of a reporter gene (the green fluorescent protein [GFP] gene), while a second gene (a truncated form of the p75 nerve growth factor receptor [ΔLNGFR]) was placed under the control of an internal constitutive promoter to monitor cell transduction, or to immunoselect transduced cells, independently from the expression of the targeted promoter. The transcriptionally targeted vectors were used to transduce cell lines, human CD34+ hematopoietic stem-progenitor cells, and murine bone marrow (BM)-repopulating stem cells. Gene expression was analyzed in the stem cell progeny in vitro and in vivo after xenotransplantation into nonobese diabetic-SCID mice or BM transplantation in coisogenic mice. The modified LTR directed high levels of transgene expression specifically in mature erythroblasts, in a TAT-independent fashion and with no alteration in titer, infectivity, and genomic stability of the lentiviral vector. Expression from the modified LTR was higher, better restricted, and showed less position-effect variegation than that obtained by the same combination of enhancer-promoter elements placed in a conventional, internal position. Cloning of the woodchuck hepatitis virus posttranscriptional regulatory element at a defined position in the targeted vector allowed selective accumulation of the genomic transcripts with respect to the internal RNA transcript, with no loss of cell-type restriction. A critical advantage of this targeting strategy is the use of a spliced, major viral transcript to express a therapeutic gene and that of an internal, independently regulated promoter to express an additional gene for either cell marking or in vivo selection purposes.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2107-2107
Author(s):  
E.L.S. Verhoeyen ◽  
Maciej Wiznerowicz ◽  
Delphine Olivier ◽  
Brigitte Izac ◽  
Didier Trono ◽  
...  

Abstract A major limitation of current generation lentiviral vectors (LVs) is their inability to govern efficient gene transfer into quiescent target cells which hampers their application for hematopoietic stem cell gene therapy. Human CD34+ cells that reside into G0 phase of the cell cycle and thus are quiescent, are indeed higly enriched in hematopoietic stem cells. Here, we designed novel lentiviral vectors that overcome this type of restriction by displaying early-acting-cytokines on their surface. Presentation of a single cytokine, thrombopoietin (TPO), or co-presentation of TPO and stem cell factor (SCF) on the lentiviral vector surface improved gene transfer into quiescent CD34+ cord blood cells by 45-fold and 77-fold, respectively, as compared to conventional lentiviral vectors. Moreover, these new LVs preferentially transduced and promoted the survival of immature resting cells rather than cycling CD34+ cells. Most importantly, the new early-cytokine-displaying lentiviral vectors allowed highly efficient gene transfer in CD34+ immature cells with long-term in vivo NOD/SCID mice repopulating capacity, a hallmark of bona fide HSCs. In conclusion, the novel ‘early-acting cytokines’ displaying LVs described here provide simplified, reproducible gene transfer protocols that ensure efficient gene transfer in hematopoietic stem cells. As such, these novel reagents bring us one step closer to selective in vivo gene therapy.


Blood ◽  
2004 ◽  
Vol 103 (10) ◽  
pp. 3710-3716 ◽  
Author(s):  
Peter A. Horn ◽  
Kirsten A. Keyser ◽  
Laura J. Peterson ◽  
Tobias Neff ◽  
Bobbie M. Thomasson ◽  
...  

Abstract The use of lentiviral vectors for the transduction of hematopoietic stem cells has evoked much interest owing to their ability to stably integrate into the genome of nondividing cells. However, published large animal studies have reported highly variable gene transfer rates of typically less than 1%. Here we report the use of lentiviral vectors for the transduction of canine CD34+ hematopoietic repopulating cells using a very short, 18-hour transduction protocol. We compared lentiviral transduction of hematopoietic repopulating cells from either stem cell factor (SCF)– and granulocyte-colony stimulating factor (G-CSF)–primed marrow or mobilized peripheral blood in a competitive repopulation assay in 3 dogs. All dogs engrafted rapidly within 9 days. Transgene expression was detected in all lineages (B cells, T cells, granulocytes, and red blood cells as well as platelets) indicating multilineage engraftment of transduced cells, with overall long-term marking levels of up to 12%. Gene transfer levels in mobilized peripheral blood cells were slightly higher than in primed marrow cells. In conclusion, we show efficient lentiviral transduction of canine repopulating cells using an overnight transduction protocol. These results have important implications for the design of stem cell gene therapy protocols, especially for those diseases in which the maintenance of stem cells in culture is a major limitation.


2020 ◽  
Author(s):  
Xiao Fang ◽  
Xiong Fang ◽  
Yujia Mao ◽  
Aaron Ciechanover ◽  
Yan Xu ◽  
...  

Abstract Background Hematopoietic stem cell (HSC) transplantation is an effective treatment strategy for many types of diseases. Peripheral blood (PB) is the most commonly used source of bone marrow (BM)-derived stem cells for current HSC transplantation. However, PB usually contains very few HSCs under normal conditions, as these cells are normally retained within the BM. This retention depends on the interaction between the CXC chemokine receptor 4 (CXCR4) expressed on the HSCs and its natural chemokine ligand, stromal cell-derived factor (SDF)-1α (also named CXCL12) present in the BM stromal microenvironment. In clinical practice, blocking this interaction with a CXCR4 antagonist can induce the rapid mobilization of HSCs from the BM into the PB.Methods C3H/HEJ, DBA/2, CD45.1+, CD45.2+ mice and monkeys were employed in colony-forming unit (CFU) assays, flow cytometry assays, and competitive/non-competitive transplantation assays, to assess the short-term mobilization efficacy of HF51116 and the long-term repopulating (LTR) ability of HSCs. Kinetics of different blood cells and the concentration of HF51116 in PB were also explored by blood routine examinations and pharmacokinetic assays. Results In this paper, we report that a novel small molecule CXCR4 antagonist, HF51116, which was designed and synthesized by our laboratory, can rapidly and potently mobilize HSCs from BM to PB in mice and monkeys. HF51116 not only mobilized HSCs when used alone but also synergized with the mobilizing effects of granulocyte-colony stimulating factor (G-CSF) after co-administration. Following mobilization by HF51116 and G-CSF, the long-term repopulating (LTR) and self-renewing HSCs were sufficiently engrafted in primary and secondary lethally irradiated mice and were able to rescue and support long-term mouse survival. In monkeys, HF51116 exhibited strong HSC mobilization activity and quickly reached the highest in vivo blood drug concentration. Conclusions These results demonstrate that HF51116 is a new promising stem cell mobilizer which specifically targets CXCR4 and merits further preclinical and clinical studies.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 91-91
Author(s):  
Yuichi Hirata ◽  
Kazuhiro Furuhashi ◽  
Hiroshi Ishi ◽  
Hao-Wei Li ◽  
Sandra Pinho ◽  
...  

Abstract A crucial player in immune regulation, FoxP3+ regulatory T cells (Tregs) are drawing attention for their heterogeneity and noncanonical functions. For example, specific subsets of Tregs in the adipose tissue control metabolic indices; muscle Tregs potentiate muscle repair, and lung Tregs prevent tissue damage. These studies, together with a previous finding that Tregs are enriched in the primary site for hematopoiesis, the bone marrow (BM), prompted us to examine whether there is a special Treg population which controls hematopoietic stem cells (HSCs). We showed that HSCs within the BM were frequently adjacent to distinctly activated FoxP3+ Tregs which highly expressed an HSC marker, CD150. Moreover, specific reduction of BM Tregs achieved by conditional deletion of CXCR4in Tregs, increased reactive oxygen species (ROSs) in HSCs. The reduction of BM Tregs further induced loss of HSC quiescence and increased HSC numbers in a manner inhibited by anti-oxidant treatment. Additionally, this increase in HSC numbers in mice lacking BM Tregs was reversed by transfer of CD150high BM Tregs but not of CD150low BM Tregs. These results indicate that CD150high niche-associated Tregs maintain HSC quiescence and pool size by preventing oxidative stress. We next sought to identify an effector molecule of niche Tregs which regulates HSCs. Among molecules highly expressed by niche Tregs, we focused on CD39 and CD73, cell surface ecto-enzymes which are required for generation of extracellular adenosine, because 1) CD39highCD73high cells within the BM were prevalent among CD150high Tregs and 2) HSCs highly expressed adenosine 2a receptors (A2AR). We showed that both conditional deletion of CD39 in Tregs and in vivo A2AR antagonist treatment induced loss of HSC quiescence and increased HSC pool size in a ROS-dependent manner, which is consistent with the findings in mice lacking BM Tregs. In addition, transfer of CD150high BM Tregs but not of CD150low BM Tregs reversed the increase in HSC numbers in FoxP3cre CD39flox mice. The data indicate that niche Treg-derived adenosine regulates HSCs. We further investigated the protective role of niche Tregs and adenosine in radiation injury against HSCs. Conditional deletion of CD39 in Tregs increased radiation-induced HSC apoptosis. Conversely, transfer of as few as 15,000 CD150high BM Tregs per B6 mouse (iv; day-1) rescued lethally-irradiated (9.5Gy) mice by preventing hematopoiesis failure. These observations indicate that niche Tregs protect HSCs from radiation stress. Finally, we investigated the role of niche Tregs in allogeneic (allo-) HSC transplantation. Our previous study showed that allo-hematopoietic stem and progenitor cells but not allo-Lin+ cells persisted in the BM of non-conditioned immune-competent recipients without immune suppression in a manner reversed by systemic Treg depletion1. This observation suggests that HSCs have a limited susceptibility to immune attack, as germline and embryonic stem cells are located within immune privileged sites. Because the study employed systemic Treg depletion and non-conditioned recipients, it remains unknown whether niche Tregs play a critical role in immune privilege of HSCs and in allo-HSC engraftment following conditioning. We showed here that the reduction of BM Tregs and conditional deletion of CD39 in Tregs abrogated allo-HSC persistence in non-conditioned immune-competent mice as well as allo-HSC engraftment following nonmyeloablative conditioning. Furthermore, transfer of CD150high BM Tregs but not of other Tregs (15,000 cells/recipient; day -2) significantly improved allo-HSC engraftment. This effect of niche Treg transfer is noteworthy given that 1-5 million Tregs per mouse were required in case of transfer of spleen or lymph node Tregs. These observations suggest that niche Tregs maintain immune privilege of HSCs and promote allo-HSC engraftment. In summary, our studies identify a unique niche-associated Treg subset and adenosine as regulators of HSC quiescence, numbers, stress response, engraftment, and immune privilege, further highlighting potential clinical utility of niche Treg transfer in radiation-induced hematopoiesis failure and in allo-HSC engraftment (under revision in Cell Stem Cell). 1 Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature474, 216-219, doi:10.1038/nature10160 (2011). Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 116 (4) ◽  
pp. 1447-1456 ◽  
Author(s):  
Rong Lu ◽  
Agnieszka Czechowicz ◽  
Jun Seita ◽  
Du Jiang ◽  
Irving L. Weissman

While the aggregate differentiation of the hematopoietic stem cell (HSC) population has been extensively studied, little is known about the lineage commitment process of individual HSC clones. Here, we provide lineage commitment maps of HSC clones under homeostasis and after perturbations of the endogenous hematopoietic system. Under homeostasis, all donor-derived HSC clones regenerate blood homogeneously throughout all measured stages and lineages of hematopoiesis. In contrast, after the hematopoietic system has been perturbed by irradiation or by an antagonistic anti-ckit antibody, only a small fraction of donor-derived HSC clones differentiate. Some of these clones dominantly expand and exhibit lineage bias. We identified the cellular origins of clonal dominance and lineage bias and uncovered the lineage commitment pathways that lead HSC clones to different levels of self-renewal and blood production under various transplantation conditions. This study reveals surprising alterations in HSC fate decisions directed by conditioning and identifies the key hematopoiesis stages that may be manipulated to control blood production and balance.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2813-2820 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei M. Wu ◽  
Francis N. Karanu ◽  
Mike Keeney ◽  
...  

Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34−Lin−). A major barrier in the further characterization of human CD34− stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity in vivo. Using cell surface markers AC133 and CD7, subfractions were isolated within CD34−CD38−Lin− and CD34+CD38−Lin− cells derived from human cord blood. Although the majority of CD34−CD38−Lin− cells lack AC133 and express CD7, an extremely rare population of AC133+CD7− cells was identified at a frequency of 0.2%. Surprisingly, these AC133+CD7− cells were highly enriched for progenitor activity at a frequency equivalent to purified fractions of CD34+ stem cells, and they were the only subset among the CD34−CD38−Lin− population capable of giving rise to CD34+ cells in defined liquid cultures. Human cells were detected in the bone marrow of non-obese/severe combined immunodeficiency (NOD/SCID) mice 8 weeks after transplantation of ex vivo–cultured AC133+CD7− cells isolated from the CD34−CD38−Lin− population, whereas 400-fold greater numbers of the AC133−CD7− subset had no engraftment ability. These studies provide novel insights into the hierarchical relationship of the human stem cell compartment by identifying a rare population of primitive human CD34− cells that are detectable after transplantation in vivo, enriched for in vitro clonogenic capacity, and capable of differentiation into CD34+ cells.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S175-S175
Author(s):  
X R Wu ◽  
C Zhou ◽  
H S Liu ◽  
L Xuan-hui ◽  
T Hu ◽  
...  

Abstract Background The application of stem cell therapy in the treatment of inflammatory bowel diseases (IBD) is limited because of the invasive approaches of stem cells. Urine-derived stem cells (USCs) were recently shown to have regenerative properties, which can be harvested in a safe, low-cost and non-invasive way. Methods Human USC were isolated and expanded from the urine of healthy male adult volunteers (n = 3, age arrange 24–30 years old). USC were characterised by cell surface marker expression profile and multipotent differentiation. In vivo therapeutic value of USC was assessed using murine colitis chronic model induced by dextran sulphate sodium (DSS). Results USC were positive for mesenchymal stem cell markers but were negative for hematopoietic stem cell markers. These cells differentiated into osteo-, adipo- and chondro-genic cell lineages. Systemic administration of USC significantly ameliorated the clinical and histopathological severity of colitis and increased the survival rate in chronic murine colitis model. Conclusion This study demonstrated that implantation of USC reduces inflammation in IBD rodent model, indicating that USC therapy serves as a potential cell-based therapeutic candidate for IBD.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2271-2286 ◽  
Author(s):  
M. Rosenzweig ◽  
T.J. MacVittie ◽  
D. Harper ◽  
D. Hempel ◽  
R.L. Glickman ◽  
...  

Optimization of mobilization, harvest, and transduction of hematopoietic stem cells is critical to successful stem cell gene therapy. We evaluated the utility of a novel protocol involving Flt3-ligand (Flt3-L) and granulocyte colony-stimulating factor (G-CSF) mobilization of peripheral blood stem cells and retrovirus transduction using hematopoietic growth factors to introduce a reporter gene, murine CD24 (mCD24), into hematopoietic stem cells in nonhuman primates. Rhesus macaques were treated with Flt3-L (200 μg/kg) and G-CSF (20 μg/kg) for 7 days and autologous CD34+ peripheral blood stem cells harvested by leukapheresis. CD34+ cells were transduced with an MFGS-based retrovirus vector encoding mCD24 using 4 daily transductions with centrifugations in the presence of Flt3-L (100 ng/mL), human stem cell factor (50 ng/mL), and PIXY321 (50 ng/mL) in serum-free medium. An important and novel feature of this study is that enhanced in vivo engraftment of transduced stem cells was achieved by conditioning the animals with a low-morbidity regimen of sublethal irradiation (320 to 400 cGy) on the day of transplantation. Engraftment was monitored sequentially in the bone marrow and blood using both multiparameter flow cytometry and semi-quantitative DNA polymerase chain reaction (PCR). Our data show successful and persistent engraftment of transduced primitive progenitors capable of giving rise to marked cells of multiple hematopoietic lineages, including granulocytes, monocytes, and B and T lymphocytes. At 4 to 6 weeks posttransplantation, 47% ± 32% (n = 4) of granulocytes expressed mCD24 antigen at the cell surface. Peak in vivo levels of genetically modified peripheral blood lymphocytes approached 35% ± 22% (n = 4) as assessed both by flow cytometry and PCR 6 to 10 weeks posttransplantation. In addition, naı̈ve (CD45RA+and CD62L+) CD4+ and CD8+cells were the predominant phenotype of the marked CD3+ T cells detected at early time points. A high level of marking persisted at between 10% and 15% of peripheral blood leukocytes for 4 months and at lower levels past 6 months in some animals. A cytotoxic T-lymphocyte response against mCD24 was detected in only 1 animal. This degree of persistent long-lived, high-level gene marking of multiple hematopoietic lineages, including naı̈ve T cells, using a nonablative marrow conditioning regimen represents an important step toward the ultimate goal of high-level permanent transduced gene expression in stem cells.


Sign in / Sign up

Export Citation Format

Share Document