scholarly journals Restriction of Human Immunodeficiency Virus Type 1 Rev Function in Murine A9 Cells Involves the Rev C-Terminal Domain

2003 ◽  
Vol 77 (5) ◽  
pp. 3084-3090 ◽  
Author(s):  
Sandra M. P. Marques ◽  
Jean-Luc Veyrune ◽  
Ram R. Shukla ◽  
Ajit Kumar

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) Rev and human T-cell leukemia virus type 1 (HTLV-1) Rex proteins are essential for the expression of viral structural proteins and productive infection. Both contain a nuclear export signal (NES) in their C-terminal domain and a nuclear localization signal (NLS) in their N-terminal domain. The NES and NLS are necessary for shuttling between nucleus and cytoplasm and are therefore indispensable for the transport of unspliced and singly spliced viral transcripts. HIV-1 Rev function is restricted in A9 cells, a murine fibroblast cell line, whereas HTLV-1 Rex is functional in these cells. Immunofluorescence studies with RevGFP fusion protein demonstrate normal import and export of Rev in A9 cells. To ascertain which domains of Rev are necessary for the restriction of Rev function in A9 cells, we studied a chimeric construct in which the NES domain of Rev was exchanged with Rex C-terminal amino acids 79 to 95, the Rev1-79/Rex79-95 chimera, which restored Rev function in A9 cells. In addition, overexpression of a truncated Rev containing the Rev C-terminal domain in the presence of wild-type Rev, led to restoration of Rev function in A9 cells. These results suggest that the C-terminal domain of HIV-1 Rev plays an important role in restricting Rev function in murine cells.

2003 ◽  
Vol 77 (13) ◽  
pp. 7236-7243 ◽  
Author(s):  
L. K. Venkatesh ◽  
T. Gettemeier ◽  
G. Chinnadurai

ABSTRACT The Rev protein of human immunodeficiency virus type 1 (HIV-1) is essential for the nucleocytoplasmic transport of unspliced and partially spliced HIV mRNAs containing the Rev response element (RRE). In a yeast two-hybrid screen of a HeLa cell-derived cDNA expression library for human factors interacting with the Rev leucine-rich nuclear export sequence (NES), we identified a kinesin-like protein, REBP (Rev/Rex effector binding protein), highly homologous to Kid, the carboxy-terminal 75-residue region of which interacts specifically with the NESs of HIV-1 Rev, human T-cell leukemia virus type 1 Rex, and equine infectious anemia virus Rev but not with functionally inactive mutants thereof. REBP is a nuclear protein that colocalizes with Rev in the nucleoplasm and nuclear periphery of transfected cells. Specific, albeit weak, interaction between REBP and Rev could be demonstrated in coimmunoprecipitation assays in BSC-40 cells. REBP can modestly enhance Rev-dependent RRE-linked reporter gene expression both independently and in cooperation with the nucleoporin cofactor Rab/hRIP. Thus, REBP displays the characteristics expected of an authentic mediator of Rev NES function and may play a role in RRE RNA transport during HIV infection.


2000 ◽  
Vol 74 (24) ◽  
pp. 11811-11824 ◽  
Author(s):  
Kalpana Gupta ◽  
David Ott ◽  
Thomas J. Hope ◽  
Robert F. Siliciano ◽  
Jef D. Boeke

ABSTRACT Active nuclear import of the human immunodeficiency virus type 1 (HIV-1) preintegration complex (PIC) is essential for the productive infection of nondividing cells. Nuclear import of the PIC is mediated by the HIV-1 matrix protein, which also plays several critical roles during viral entry and possibly during virion production facilitating the export of Pr55Gag and genomic RNA. Using a yeast two-hybrid screen, we identified a novel human virion-associated matrix-interacting protein (VAN) that is highly conserved in vertebrates and expressed in most human tissues. Its expression is upregulated upon activation of CD4+ T cells. VAN is efficiently incorporated into HIV-1 virions and, like matrix, shuttles between the nucleus and cytoplasm. Furthermore, overexpression of VAN significantly inhibits HIV-1 replication in tissue culture. We propose that VAN regulates matrix nuclear localization and, by extension, both nuclear import of the PIC and export of Pr55Gag and viral genomic RNA during virion production. Our data suggest that this regulatory mechanism reflects a more global process for regulation of nucleocytoplasmic transport.


2016 ◽  
Vol 90 (17) ◽  
pp. 7607-7617 ◽  
Author(s):  
Hélène Dutartre ◽  
Mathieu Clavière ◽  
Chloé Journo ◽  
Renaud Mahieux

Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) are complex retroviruses mainly infecting CD4+T lymphocytes. In addition, antigen-presenting cells such as dendritic cells (DCs) are targetedin vivoby both viruses, although to a lesser extent. Interaction of HIV-1 with DCs plays a key role in viral dissemination from the mucosa to CD4+T lymphocytes present in lymphoid organs. While similar mechanisms may occur for HTLV-1 as well, most HTLV-1 data were obtained from T-cell studies, and little is known regarding the trafficking of this virus in DCs. We first compared the efficiency of cell-free versus cell-associated viral sources of both retroviruses at infecting DCs. We showed that both HIV-1 and HTLV-1 cell-free particles are poorly efficient at productively infecting DCs, except when DC-SIGN has been engaged. Furthermore, while SAMHD-1 accounts for restriction of cell-free HIV-1 infection, it is not involved in HTLV-1 restriction. In addition, cell-free viruses lead mainly to a nonproductive DC infection, leading totrans-infection of T-cells, a process important for HIV-1 spread but not for that of HTLV-1. Finally, we show that T-DC cell-to-cell transfer implies viral trafficking in vesicles that may both increase productive infection of DCs (“cis-infection”) and allow viral escape from immune surveillance. Altogether, these observations allowed us to draw a model of HTLV-1 and HIV-1 trafficking in DCs.


2001 ◽  
Vol 75 (22) ◽  
pp. 10738-10745 ◽  
Author(s):  
Wonkyu Choe ◽  
David J. Volsky ◽  
Mary Jane Potash

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) interacts with its target cells through CD4 and a coreceptor, generally CCR5 or CXCR4. Macrophages display CD4, CCR5, and CXCR4 that are competent for binding and entry of virus. Virus binding also induces several responses by lymphocytes and macrophages that can be dissociated from productive infection. We investigated the responses of macrophages to exposure to a series of HIV-1 species, R5 species that productively infect and X4 species that do not infect macrophages. We chose to monitor production of several physiologically relevant factors within hours of treatment to resolve virally induced effects that may be unlinked to HIV-1 production. Our novel findings indicate that independently of their coreceptor phenotype and independently of virus replication, exposure to certain R5 and X4 HIV-1 species induced secretion of high levels of macrophage inflammatory protein 1α (MIP-1α), MIP-1β, RANTES, and tumor necrosis factor alpha. However two of the six R5 species tested, despite efficient infection, were unable to induce rapid chemokine production. The acute effects of virus on macrophages could be mimicked by exposure to purified R5 or the X4 HIV-1 envelope glycoprotein gp120. Depletion of intracellular Ca2+ or inhibition of protein synthesis blocked the chemokine induction, implicating Ca2+-mediated signal transduction and new protein synthesis in the response. The group of viruses able to induce this chemokine response was not consistent with coreceptor usage. We conclude that human macrophages respond rapidly to R5 and X4 envelope binding by production of high levels of physiologically active proteins that are implicated in HIV-1 pathogenesis.


2010 ◽  
Vol 84 (13) ◽  
pp. 6748-6759 ◽  
Author(s):  
Chad M. Swanson ◽  
Nathan M. Sherer ◽  
Michael H. Malim

ABSTRACT Nuclear RNA processing events, such as 5′ cap formation, 3′ polyadenylation, and pre-mRNA splicing, mark mRNA for efficient translation. Splicing enhances translation via the deposition of the exon-junction complex and other multifunctional splicing factors, including SR proteins. All retroviruses synthesize their structural and enzymatic proteins from unspliced genomic RNAs (gRNAs) and must therefore exploit unconventional strategies to ensure their effective expression. Here, we report that specific SR proteins, particularly SRp40 and SRp55, promote human immunodeficiency virus type 1 (HIV-1) Gag translation from unspliced (intron-containing) viral RNA. This activity does not correlate with nucleocytoplasmic shuttling capacity and, in the case of SRp40, is dependent on the second RNA recognition motif and the arginine-serine (RS) domain. While SR proteins enhance Gag expression independent of RNA nuclear export pathway choice, altering the nucleotide sequence of the gag-pol coding region by codon optimization abolishes this effect. We therefore propose that SR proteins couple HIV-1 gRNA biogenesis to translational utilization.


2000 ◽  
Vol 74 (15) ◽  
pp. 6946-6952 ◽  
Author(s):  
Shirley Lee ◽  
H. Lee Tiffany ◽  
Lisa King ◽  
Philip M. Murphy ◽  
Hana Golding ◽  
...  

ABSTRACT To determine whether human immunodeficiency virus type 1 (HIV-1) coreceptors besides CXCR4 and CCR5 are involved in HIV-1 infection of the thymus, we focused on CCR8, a receptor for the chemokine I-309, because of its high expression in the thymus. Similar levels of CCR8 mRNA were detected in immature and mature primary human thymocytes. Consistent with this, [125I]I-309 was shown to bind specifically and with similar affinity to the surface of immature and mature human thymocytes. Fusion of human thymocytes with cells expressing HIV-1 X4 or X4R5 envelope glycoprotein was inhibited by I-309 in a dose-dependent manner. In addition, I-309 partially inhibited productive infection of human thymocytes by X4, R5, and X4R5 HIV-1 strains. Our data provide the first evidence that CCR8 functions as an HIV-1 coreceptor on primary human cells and suggest that CCR8 may contribute to HIV-1-induced thymic pathogenesis.


2001 ◽  
Vol 75 (15) ◽  
pp. 6748-6757 ◽  
Author(s):  
Yoshiaki Takahashi ◽  
Yuetsu Tanaka ◽  
Atsuya Yamashita ◽  
Yoshio Koyanagi ◽  
Masataka Nakamura ◽  
...  

ABSTRACT OX40 is a member of the tumor necrosis factor (TNF) receptor superfamily and known to be an important costimulatory molecule expressed on activated T cells. To investigate the role of costimulation of OX40 in human immunodeficiency virus type 1 (HIV-1) infection by its natural ligand, gp34, the OX40-transfected ACH-2 cell line, ACH-2/OX40, chronically infected with HIV-1, was cocultured with paraformaldehyde (PFA)-fixed gp34-transfected mouse cell line, SV-T2/gp34. The results showed that HIV-1 production was strongly induced. This was followed by apparent apoptosis, and both processes were specifically inhibited by the gp34-specific neutralizing monoclonal antibody 5A8. Endogenous TNF alpha (TNF-α) and TNF-β production were not involved in the enhanced HIV-1 production. Furthermore, enhanced HIV-1 transcription in gp34-stimulated ACH-2/OX40 cells was dependent on the κB site of the HIV-1 long terminal repeat, and the OX40-gp34 interaction activated NF-κB consisting of p50 and p65 subunits. When primary activated CD4+ T cells acutely infected with HIV-1NL4-3 (CXCR4-using T-cell-line-tropic) were cocultured with PFA-fixed gp34+ human T-cell leukemia virus type 1-bearing MT-2 cells or SV-T2/gp34 cells, HIV-1 production was also markedly enhanced. The enhancement was again significantly inhibited by 5A8. The present study first shows that OX40-gp34 interaction stimulates HIV-1 expression and suggests that OX40 triggering by gp34 may play an important role in enhancing HIV-1 production in both acutely and latently infected CD4+ T cells in vivo.


2014 ◽  
Vol 89 (4) ◽  
pp. 2415-2424 ◽  
Author(s):  
John P. Donahue ◽  
Rebecca T. Levinson ◽  
Jonathan H. Sheehan ◽  
Lorraine Sutton ◽  
Harry E. Taylor ◽  
...  

ABSTRACTMembers of the APOBEC3 family of cytidine deaminases vary in their proportions of a virion-incorporated enzyme that is localized to mature retrovirus cores. We reported previously that APOBEC3F (A3F) was highly localized into mature human immunodeficiency virus type 1 (HIV-1) cores and identified that L306 in the C-terminal cytidine deaminase (CD) domain contributed to its core localization (C. Song, L. Sutton, M. Johnson, R. D'Aquila, J. Donahue, J Biol Chem287:16965–16974, 2012,http://dx.doi.org/10.1074/jbc.M111.310839). We have now determined an additional genetic determinant(s) for A3F localization to HIV-1 cores. We found that one pair of leucines in each of A3F's C-terminal and N-terminal CD domains jointly determined the degree of localization of A3F into HIV-1 virion cores. These are A3F L306/L368 (C-terminal domain) and A3F L122/L184 (N-terminal domain). Alterations to one of these specific leucine residues in either of the two A3F CD domains (A3F L368A, L122A, and L184A) decreased core localization and diminished HIV restriction without changing virion packaging. Furthermore, double mutants in these leucine residues in each of A3F's two CD domains (A3F L368A plus L184A or A3F L368A plus L122A) still were packaged into virions but completely lost core localization and anti-HIV activity. HIV virion core localization of A3F is genetically separable from its virion packaging, and anti-HIV activity requires some core localization.IMPORTANCESpecific leucine-leucine interactions are identified as necessary for A3F's core localization and anti-HIV activity but not for its packaging into virions. Understanding these signals may lead to novel strategies to enhance core localization that may augment effects of A3F against HIV and perhaps of other A3s against retroviruses, parvoviruses, and hepatitis B virus.


2000 ◽  
Vol 74 (22) ◽  
pp. 10822-10826 ◽  
Author(s):  
Marcus Graf ◽  
Alexandra Bojak ◽  
Ludwig Deml ◽  
Kurt Bieler ◽  
Hans Wolf ◽  
...  

ABSTRACT Based on the human immunodeficiency virus type 1 (HIV-1)gag gene, subgenomic reporter constructs have been established allowing the contributions of differentcis-acting elements to the Rev dependency of late HIV-1 gene products to be determined. Modification of intragenic regulatory elements achieved by adapting the codon usage of the complete gene to highly expressed mammalian genes resulted in constitutive nuclear export allowing high levels of Gag expression independent from the Rev/Rev-responsive element system and irrespective of the absence or presence of the isolated major splice donor. Leptomycin B inhibitor studies revealed that the RNAs derived from the codon-optimizedgag gene lacking AU-rich inhibitory elements are directed to a distinct, CRM1-independent, nuclear export pathway.


Sign in / Sign up

Export Citation Format

Share Document