cytoplasmic translocation
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 22)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
Qing-Bin Chen ◽  
Wenjing Wang ◽  
Yue Zhang ◽  
Qidi Zhan ◽  
Kang Liu ◽  
...  

Seed germination is a physiological process regulated by multiple factors. Abscisic acid (ABA) can inhibit seed germination to improve seedling survival under conditions of abiotic stress, and this process is often regulated by light signals. Constitutive Photomorphogenic 1 (COP1) is an upstream core repressor of light signals, and is involved in several ABA responses. Here, we demonstrate that COP1 is a negative regulator of the ABA-mediated inhibition of seed germination. Disruption of COP1 enhanced Arabidopsis seed sensitivity to ABA and increased ROS levels. In seeds, ABA induced the translocation of COP1 to the cytoplasm, resulting in enhanced ABA-induced ROS levels. Genetic evidence indicated that HY5 and ABI5 act downstream of COP1 in the ABA-mediated inhibition of seed germination. ABA-induced COP1 cytoplasmic localization increased HY5 and ABI5 protein levels in the nucleus, leading to increased expression of ABI5 target genes and ROS levels in seeds. Together, our results reveal that ABA-induced cytoplasmic translocation of COP1 activates the HY5-ABI5 pathway to promote the expression of ABA-responsive genes and the accumulation of ROS during ABA-mediated inhibition of seed germination. These findings enhance the role of COP1 in the ABA signal transduction pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kathryn E. Haley ◽  
Mustafa Elshani ◽  
In Hwa Um ◽  
Cameron Bell ◽  
Peter D. Caie ◽  
...  

Podocyte loss plays a pivotal role in the pathogenesis of glomerular disease. However, the mechanisms underlying podocyte damage and loss remain poorly understood. Although detachment of viable cells has been documented in experimental Diabetic Nephropathy, correlations between reduced podocyte density and disease severity have not yet been established. YAP, a mechanosensing protein, has recently been shown to correlate with glomerular disease progression, however, the underlying mechanism has yet to be fully elucidated. In this study, we sought to document podocyte density in Diabetic Nephropathy using an amended podometric methodology, and to investigate the interplay between YAP and cytoskeletal integrity during podocyte injury. Podocyte density was quantified using TLE4 and GLEPP1 multiplexed immunofluorescence. Fourteen Diabetic Nephropathy cases were analyzed for both podocyte density and cytoplasmic translocation of YAP via automated image analysis. We demonstrate a significant decrease in podocyte density in Grade III/IV cases (124.5 per 106 μm3) relative to Grade I/II cases (226 per 106 μm3) (Student’s t-test, p < 0.001), and further show that YAP translocation precedes cytoskeletal rearrangement following injury. Based on these findings we hypothesize that a significant decrease in podocyte density in late grade Diabetic Nephropathy may be explained by early cytoplasmic translocation of YAP.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wenmei Wu ◽  
Kang Li ◽  
Sanyou Guo ◽  
Jing Xu ◽  
Qiuqin Ma ◽  
...  

AbstractProtein acetylation plays potential roles in regulating autophagy occurrence. However, it varies greatly between yeast and mammals, and has not been thoroughly investigated in other organisms. Here, we reported that the components of BmAtg8–PE ubiquitin-like system (BmAtg3, BmAtg4, BmAtg7, and BmAtg8) in Bombyx mori were localized in the nucleus under nutrient-rich conditions, whereas they were exported to the cytoplasm upon autophagy induction. RNAi of BmP300 and inhibition of BmP300 activity resulted in nucleo-cytoplasmic translocation of BmAtg3 and BmAtg8, as well as premature induction of autophagy in the absence of stimulus. Conversely, RNAi of BmHDAC1 and inhibition of class I/II HADCs activities led to the nuclear accumulation of BmAtg3 and BmAtg8. In addition, acetylation sites in Atg proteins of BmAtg8–PE ubiquitin-like system were identified by mass spectrometry, and acetylation-site mutations caused nucleo-cytoplasmic translocation of BmAtg3, BmAtg4, and BmAtg8 along with autophagy promotion. Similarly, the subcellular localization of human ATG4b is determined by acetylation modification. In general, BmP300-mediated acetylation sequesters the components of BmAtg8–PE ubiquitin-like system in the nucleus, thus leading to the autophagy inhibition. Oppositely, BmHDAC1-mediated deacetylation leads to the nucleo-cytoplasmic translocation of the components of BmAtg8–PE ubiquitin-like system and promotes autophagy. This process is evolutionarily conserved between insects and mammals.


2021 ◽  

Abstract The authors have requested that this preprint be withdrawn due to author disagreement.


Author(s):  
Jiro Aoyama ◽  
Mizuko Osaka ◽  
Michiyo Deushi ◽  
Shoichi Hosoya ◽  
Akihito Ishigami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document