scholarly journals Human Papillomavirus Types 16, 31, and 58 Use Different Endocytosis Pathways To Enter Cells

2003 ◽  
Vol 77 (6) ◽  
pp. 3846-3850 ◽  
Author(s):  
Latifa Bousarghin ◽  
Antoine Touzé ◽  
Pierre-Yves Sizaret ◽  
Pierre Coursaget

ABSTRACT The early steps of the intracellular trafficking of human papillomavirus type 16 (HPV-16), -31, and -58 pseudovirions were studied by investigating the effects of drugs acting at defined points of endocytosis pathways on virus-like particle-mediated pseudoinfection by overexpression of a dominant-negative form of the Eps15 protein to inhibit clathrin-mediated endocytosis and by electron microscopy. The results obtained suggested the involvement of clathrin-mediated endocytosis in HPV-16 and HPV-58 entry and caveola-mediated endocytosis in HPV-31 entry.

2009 ◽  
Vol 37 (4) ◽  
pp. 1065-1074 ◽  
Author(s):  
Zhenghai Ma ◽  
Lihong Liu ◽  
Fuchun Zhang ◽  
Meng Yu ◽  
Kai Wang ◽  
...  

This study investigated the association between infectious microbes and persistent infection with human papillomavirus type 16 (HPV-16) in cervical cancer. Bacterial strains (identified as Enterococcus, Staphylococcus, Bacillus and Corynebacterium, based on their partial 16S rDNA sequence) were HPV-16 positive from 12 out of 14 cervical cancer biopsies. Total DNA was isolated from the four bacterial strains, and HPV-16 genes and genome were detected using polymerase chain reaction (PCR) and Southern blotting. RNA transcripts for HPV-16 E6 and L1 genes were detected in total bacterial RNA samples using reverse transcription-PCR, and HPV-16 L1 protein expression was detected in bacterial cells by Western blotting and immunocolloidal gold electron microscopy. The presence of virus particles in bacterial cells was demonstrated by transmission electron microscopy. The results suggest that bacteria carrying HPV-16 could provide a potential explanation for how infectious microbes contribute to the progression from HPV-16 infection to cervical cancer.


2003 ◽  
Vol 77 (18) ◽  
pp. 9852-9861 ◽  
Author(s):  
H. R. McMurray ◽  
D. J. McCance

ABSTRACT Human papillomavirus type 16 (HPV-16), a DNA tumor virus, has a causal role in cervical cancer, and the viral oncoproteins E6 and E7 contribute to oncogenesis in multiple ways. E6 increases telomerase activity in keratinocytes through increased transcription of the telomerase catalytic subunit gene (TERT), but the factors involved in this have been elusive. We have found that mutation of the proximal E box in the TERT promoter has an activating effect in luciferase assays. This suggested that a repressive complex might be present at this site. HPV-16 E6 activated the TERT promoter predominantly through the proximal E box, and thus, might be acting on this repressive complex. This site is specific for the Myc/Mad/Max transcription factors as well as USF1 and USF2. Addition of exogenous USF1 or USF2 repressed activation of the TERT promoter by E6, dependent on the proximal E box. Using siRNA against USF1 or USF2 allowed for greater activation of the TERT promoter by E6. Conversely, loss of c-Myc function, through a dominant-negative Myc molecule, reduced activation by E6. Chromatin immunoprecipitations showed that in the presence of E6, there was a reduction in binding of USF1 and USF2 at the TERT promoter proximal E box, and a concomitant increase in c-Myc bound to this site. This shows that a repressive complex containing USF1 and USF2 is present in normal cells with little or no telomerase activity. In E6 keratinocytes, this repressive complex is replaced by c-Myc, which corresponds to higher levels of TERT transcription and consequently, telomerase activity.


2010 ◽  
Vol 84 (16) ◽  
pp. 8219-8230 ◽  
Author(s):  
Monika Somberg ◽  
Stefan Schwartz

ABSTRACT Our results presented here demonstrate that the most abundant human papillomavirus type 16 (HPV-16) mRNAs expressing the viral oncogenes E6 and E7 are regulated by cellular ASF/SF2, itself defined as a proto-oncogene and overexpressed in cervical cancer cells. We show that the most frequently used 3′-splice site on the HPV-16 genome, site SA3358, which is used to produce primarily E4, E6, and E7 mRNAs, is regulated by ASF/SF2. Splice site SA3358 is immediately followed by 15 potential binding sites for the splicing factor ASF/SF2. Recombinant ASF/SF2 binds to the cluster of ASF/SF2 sites. Mutational inactivation of all 15 sites abolished splicing to SA3358 and redirected splicing to the downstream-located, late 3′-splice site SA5639. Overexpression of a mutant ASF/SF2 protein that lacks the RS domain, also totally inhibited the usage of SA3358 and redirected splicing to the late 3′-splice site SA5639. The 15 ASF/SF2 binding sites could be replaced by an ASF/SF2-dependent, HIV-1-derived splicing enhancer named GAR. This enhancer was also inhibited by the mutant ASF/SF2 protein that lacks the RS domain. Finally, silencer RNA (siRNA)-mediated knockdown of ASF/SF2 caused a reduction in spliced HPV-16 mRNA levels. Taken together, our results demonstrate that the major HPV-16 3′-splice site SA3358 is dependent on ASF/SF2. SA3358 is used by the most abundantly expressed HPV-16 mRNAs, including those encoding E6 and E7. High levels of ASF/SF2 may therefore be a requirement for progression to cervical cancer. This is supported by our earlier findings that ASF/SF2 is overexpressed in high-grade cervical lesions and cervical cancer.


Author(s):  
John Cason ◽  
Parminder K. Kambo ◽  
Bhavneet Shergill ◽  
John Bible ◽  
Barbara Kell ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Anamika Sharma ◽  
Gaiti Hasan

Innate behaviours, although robust and hard wired, rely on modulation of neuronal circuits, for eliciting an appropriate response according to internal states and external cues. Drosophila flight is one such innate behaviour that is modulated by intracellular calcium release through inositol 1,4,5-trisphosphate receptors (IP3Rs). Cellular mechanism(s) by which IP3Rs modulate neuronal function for specific behaviours remain speculative, in vertebrates and invertebrates. To address this, we generated an inducible dominant negative form of the IP3R (IP3RDN). Flies with neuronal expression of IP3RDN exhibit flight deficits. Expression of IP3RDN helped identify key flight-modulating dopaminergic neurons with axonal projections in the mushroom body. Flies with attenuated IP3Rs in these presynaptic dopaminergic neurons exhibit shortened flight bouts and a disinterest in seeking food, accompanied by reduced excitability and dopamine release upon cholinergic stimulation. Our findings suggest that the same neural circuit modulates the drive for food search and for undertaking longer flight bouts.


2001 ◽  
Vol 13 (6) ◽  
pp. 777-783 ◽  
Author(s):  
Kazu Kikuchi ◽  
Yoshitada Kawasaki ◽  
Naoto Ishii ◽  
Yoshiteru Sasaki ◽  
Hironobu Asao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document