scholarly journals Modulation of flight and feeding behaviours requires presynaptic IP3Rs in dopaminergic neurons

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Anamika Sharma ◽  
Gaiti Hasan

Innate behaviours, although robust and hard wired, rely on modulation of neuronal circuits, for eliciting an appropriate response according to internal states and external cues. Drosophila flight is one such innate behaviour that is modulated by intracellular calcium release through inositol 1,4,5-trisphosphate receptors (IP3Rs). Cellular mechanism(s) by which IP3Rs modulate neuronal function for specific behaviours remain speculative, in vertebrates and invertebrates. To address this, we generated an inducible dominant negative form of the IP3R (IP3RDN). Flies with neuronal expression of IP3RDN exhibit flight deficits. Expression of IP3RDN helped identify key flight-modulating dopaminergic neurons with axonal projections in the mushroom body. Flies with attenuated IP3Rs in these presynaptic dopaminergic neurons exhibit shortened flight bouts and a disinterest in seeking food, accompanied by reduced excitability and dopamine release upon cholinergic stimulation. Our findings suggest that the same neural circuit modulates the drive for food search and for undertaking longer flight bouts.

2020 ◽  
Author(s):  
Anamika Sharma ◽  
Gaiti Hasan

AbstractInnate behaviours, though robust and hard wired, rely on modulation of neuronal circuits, for eliciting an appropriate response according to internal states and external cues. Drosophila flight is one such innate behaviour that is modulated by intracellular calcium release through inositol 1,4,5-trisphosphate receptors (IP3Rs). Cellular mechanism(s) by which IP3Rs modulate neuronal function for specific behaviours remain speculative, in vertebrates and invertebrates. To address this, we generated an inducible dominant negative form of the IP3R (IP3RDN). Flies with neuronal expression of IP3RDN exhibit flight deficits. Spatiotemporal expression of IP3RDN helped identify key flight-modulating dopaminergic neurons with axonal projections in the mushroom body. Attenuation of IP3R function in these presynaptic dopaminergic neurons resulted in flies with shortened flight bouts and a disinterest in seeking food, accompanied by reduced excitability and dopamine release upon cholinergic stimulation. Our findings suggest that the same neural circuit modulates the drive for food search and for undertaking longer flight bouts.


2001 ◽  
Vol 13 (6) ◽  
pp. 777-783 ◽  
Author(s):  
Kazu Kikuchi ◽  
Yoshitada Kawasaki ◽  
Naoto Ishii ◽  
Yoshiteru Sasaki ◽  
Hironobu Asao ◽  
...  

Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3393-3402 ◽  
Author(s):  
Kenneth M. Cadigan ◽  
Austin D. Jou ◽  
Roel Nusse

In the developing eye, wingless activity represses proneural gene expression (and thus interommatidial bristle formation) and positions the morphogenetic furrow by blocking its initiation in the dorsal and ventral regions of the presumptive eye. We provide evidence that wingless mediates both effects, at least in part, through repression of the basic helix-loop-helix protein Daughterless. daughterless is required for high proneural gene expression and furrow progression. Ectopic expression of wingless blocks Daughterless expression in the proneural clusters. This repression, and that of furrow progression, can be mimicked by an activated form of armadillo and blocked by a dominant negative form of pangolin/TCF. Placing daughterless under the control of a heterologous promoter blocks the ability of ectopic wingless to inhibit bristle formation and furrow progression. hedgehog and decapentapleigic could not rescue the wingless furrow progression block, indicating that wingless acts downstream of these genes. In contrast, Atonal and Scute, which are thought to heterodimerize with Daughterless to promote furrow progression and bristle formation, respectively, can block ectopic wingless action. These results are summarized in a model where daughterless is a major, but probably not the only, target of wingless action in the eye.


Development ◽  
2001 ◽  
Vol 128 (14) ◽  
pp. 2711-2721 ◽  
Author(s):  
Yoshie Shimauchi ◽  
Seiko D. Murakami ◽  
Nori Satoh

Differentiation of notochord cells and mesenchyme cells of the ascidian Halocynthia roretzi requires interactions with neighboring endodermal cells and previous experiments suggest that these interactions require fibroblast growth factor (FGF). In the present study, we examined the role of FGF in these interactions by disrupting signaling using the dominant negative form of the FGF receptor. An FGF receptor gene of H. roretzi (HrFGFR) is expressed both maternally and zygotically. The maternally expressed transcript was ubiquitously distributed in fertilized eggs and in early embryos. Zygotic expression became evident by the neurula stage and transcripts were detected in epidermal cells of the posterior half of embryos. Synthetic mRNA for the dominant negative form of FGFR, in which the intracellular tyrosine kinase domain was deleted, was injected into fertilized eggs to interfere with the possible function of HrFGFR. Injected eggs cleaved and gastrulated the same as the control embryos. Analyses of the expression of differentiation markers in the experimental embryos indicated that the differentiation of epidermal cells, muscle cells and endodermal cells was not affected significantly. However, manipulated embryos showed downregulation of notochord-specific Brachyury expression and failure of notochord cell differentiation, resulting in the development of tailbud embryos with shorted tails. The expression of an actin gene that is normally expressed in mesenchyme cells was also suppressed. These results suggest that FGF signals are involved in differentiation of notochord cells and mesenchyme cells in Halocynthia embryos. Furthermore, the patterning of a neuron-specific tubulin gene expression was disturbed, suggesting that the formation of the nervous system was directly affected by disrupting FGF signals or indirectly affected due to the disruption of normal notochord formation.


Sign in / Sign up

Export Citation Format

Share Document