scholarly journals Genetic Determinants of Cell Type-Specific Poliovirus Propagation in HEK 293 Cells

2005 ◽  
Vol 79 (10) ◽  
pp. 6281-6290 ◽  
Author(s):  
Stephanie A. Campbell ◽  
Jennifer Lin ◽  
Elena Y. Dobrikova ◽  
Matthias Gromeier

ABSTRACT The ability of poliovirus to propagate in neuronal cells can be reduced by introducing appropriate nucleotide substitutions into the viral genome. Specific mutations scattered throughout the poliovirus genome yielded the live attenuated vaccine strains of poliovirus. Neuron-specific propagation deficits of the Sabin strains are partially encrypted within a confined region of the internal ribosomal entry site (IRES), which carries attenuating point mutations in all three serotypes. Recently, high levels of neurovirulence attenuation were achieved with genetically engineered polioviruses containing heterologous IRES elements. This is exemplified with poliovirus recombinants replicating under control of a human rhinovirus type 2 (HRV2) IRES element. We have carried out experiments delineating the genetic basis for neuronal IRES function. Neuronal dysfunction of the HRV2 IRES is determined mainly by IRES stem-loop domain V, the locus for attenuating point mutations within the Sabin strains. Neuronal incompetence associated with HRV2 IRES domain V is substantially more pronounced than that observed with the attenuating IRES point mutation of the Sabin serotype 1 vaccine strain. Mix-and-match recombination of polio and HRV2 IRES domain V suggests that the attenuation phenotype correlates with overall structural features rather than primary sequence. Our experiments have identified HEK 293 cells as a novel system for the study of neuron-specific replication phenotypes of poliovirus. This cell line, originally derived from embryonic human kidney, has recently been described to display neuronal characteristics. We report propagation properties in HEK 293 cells for poliovirus recombinants with attenuated neurovirulence in experimental animals that corroborate this observation.

Autophagy ◽  
2013 ◽  
Vol 9 (9) ◽  
pp. 1407-1417 ◽  
Author(s):  
Patience Musiwaro ◽  
Matthew Smith ◽  
Maria Manifava ◽  
Simon A. Walker ◽  
Nicholas T. Ktistakis
Keyword(s):  
Hek 293 ◽  

2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


2007 ◽  
Vol 9 (4) ◽  
pp. 475-485 ◽  
Author(s):  
R. M. Johann ◽  
Ch. Baiotto ◽  
Ph. Renaud
Keyword(s):  
Hek 293 ◽  

2010 ◽  
Vol 35 (7) ◽  
pp. 1075-1082 ◽  
Author(s):  
Lina Ji ◽  
Abha Chauhan ◽  
Ved Chauhan

Endocrinology ◽  
2009 ◽  
Vol 150 (9) ◽  
pp. 4154-4162 ◽  
Author(s):  
Daniel P. Sherbet ◽  
Oleg L. Guryev ◽  
Mahboubeh Papari-Zareei ◽  
Dario Mizrachi ◽  
Siayareh Rambally ◽  
...  

Abstract Human 17β-hydroxysteroid dehydrogenase types 1 and 2 (17βHSD1 and 17βHSD2) regulate estrogen potency by catalyzing the interconversion of estrone (E1) and estradiol (E2) using nicotinamide adenine dinucleotide (phosphate) cofactors NAD(P)(H). In intact cells, 17βHSD1 and 17βHSD2 establish pseudo-equilibria favoring E1 reduction or E2 oxidation, respectively. The vulnerability of these equilibrium steroid distributions to mutations and to altered intracellular cofactor abundance and redox state, however, is not known. We demonstrate that the equilibrium E2/E1 ratio achieved by 17βHSD1 in intact HEK-293 cell lines is progressively reduced from 94:6 to 10:90 after mutagenesis of R38, which interacts with the 2′-phosphate of NADP(H), and by glucose deprivation, which lowers the NADPH/NADP+ ratio. The shift to E2 oxidation parallels changes in apparent Km values for purified 17βHSD1 proteins to favor NAD(H) over NADP(H). In contrast, mutagenesis of E116 (corresponding to R38 in 17βHSD1) and changes in intracellular cofactor ratios do not alter the greater than 90:10 E1/E2 ratio catalyzed by 17βHSD2, and these mutations lower the apparent Km of recombinant 17βHSD2 for NADP(H) only less than 3-fold. We conclude that the equilibrium E1/E2 ratio maintained by human 17βHSD1 in intact cells is governed by NADPH saturation, which is strongly dependent on both R38 and high intracellular NADPH/NADP+ ratios. In contrast, the preference of 17βHSD2 for E2 oxidation strongly resists alteration by genetic and metabolic manipulations. These findings suggest that additional structural features, beyond the lack of a specific arginine residue, disfavor NADPH binding and thus support E2 oxidation by 17βHSD2 in intact cells.


2007 ◽  
Vol 454 (3) ◽  
pp. 441-450 ◽  
Author(s):  
Christian Barmeyer ◽  
Jeff Huaqing Ye ◽  
Shafik Sidani ◽  
John Geibel ◽  
Henry J. Binder ◽  
...  
Keyword(s):  
Hek 293 ◽  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Gail A Robertson ◽  
Harinath Sale ◽  
David Tester ◽  
Thomas J O’Hara ◽  
Pallavi Phartiyal ◽  
...  

Cardiac I Kr is a critical repolarizing current in the heart and a target for inherited and acquired long QT syndrome. Biochemical studies show that native I Kr channels are heteromers composed of both hERG 1a and 1b subunits, yet our current understanding of I Kr functional properties derives primarily from studies of homo-oligomers of the original hERG 1a isolate. The hERG 1a and 1b subunits are identical except at the amino (NH2) terminus, which in hERG 1b is much shorter and has a unique primary sequence. We compared the biophysical properties of currents produced by hERG 1a and 1a/1b channels expressed in HEK-293 cells at near-physiological temperatures. We found that heteromeric hERG 1a/1b currents are much larger than hERG 1a currents and conduct 80% more charge during an action potential. This surprising difference corresponds to a two-fold increase in the apparent rates of activation and recovery from inactivation, which reduces rectification and facilitates current rebound during repolarization. Kinetic modeling shows these gating differences account quantitatively for the differences in current amplitude between the two channel types. Depending on the action potential model used, loss of 1b predicts an increase in action potential duration of 27 ms (7%) or 41 ms (17%), respectively. Drug sensitivity was also different. Compared to homomeric 1a channels, heteromeric 1a/1b channels were inhibited by E-4031 with a slower time course and a corresponding four-fold positive shift in the IC 50 . Differences in current kinetics and drug sensitivity were modeled by “NH2 mode” gating with conformational states bound by the amino terminus in hERG 1a homomers but not 1a/1b heteromers. The importance of hERG 1b in vivo is supported by the identification of a 1b-specific A8V missense mutation in 1/269 unrelated genotype-negative LQTS patients and absent in 400 control alleles. Mutant 1bA8V expressed alone or with hERG 1a in HEK-293 cells nearly eliminated 1b protein. Thus, mutations specifically disrupting hERG 1b function are expected to reduce cardiac I Kr , prolong QT interval and enhance drug sensitivity, thus representing a potential mechanism underlying inherited or acquired LQTS.


2007 ◽  
Vol 293 (6) ◽  
pp. C1983-C1990 ◽  
Author(s):  
Minho Kang ◽  
Gracious R. Ross ◽  
Hamid I. Akbarali

The carboxyl terminus of the calcium channel plays an important role in the regulation of calcium entry, signal transduction, and gene expression. Potential protein-protein interaction sites within the COOH terminus of the L-type calcium channel include those for the SH3 and SH2 binding domains of c-Src kinase that regulates calcium currents in smooth muscle. In this study, we examined the binding sites involved in Src kinase-mediated phosphorylation of the human voltage-gated calcium channel (Cav) 1.2b (hCav1.2b) and the effect of nitrotyrosylation. Cotransfection of human embryonic kidney (HEK)-293 cells with hCav1.2b and c-Src resulted in tyrosine phosphorylation of the calcium channel, which was prevented by nitration of tyrosine residues by peroxynitrite. Whole cell calcium currents were reduced by 58 + 5% by the Src kinase inhibitor PP2 and 64 + 6% by peroxynitrite. Nitrotyrosylation prevented Src-mediated regulation of the currents. Glutathione S-transferase fusion protein of the distal COOH terminus of hCav1.2b (1809-2138) bound to SH2 domain of Src following tyrosine phosphorylation, while binding to SH3 required the presence of the proline-rich motif. Site-directed mutation of Y2134 prevented SH2 binding and resulted in reduced phosphorylation of hCav1.2b. Within the distal COOH terminus, single, double, or triple mutations of Y1837, Y1861, and Y2134 were constructed and expressed in HEK-293 cells. The inhibitory effects of PP2 and peroxynitrite on calcium currents were significantly reduced in the double mutant Y1837-2134F. These data demonstrate that the COOH terminus of hCav1.2b contains sites for the SH2 and SH3 binding of Src kinase. Nitrotyrosylation of these sites prevents Src kinase regulation and may be importantly involved in calcium influx regulation during inflammation.


2007 ◽  
Vol 406 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Nobuhito Ono ◽  
Ingrid Van der Heijden ◽  
George L. Scheffer ◽  
Koen Van de Wetering ◽  
Elizabeth Van Deemter ◽  
...  

The human and murine genes for MRP9 (multidrug resistance-associated protein 9; ABCC12) yield many alternatively spliced RNAs. Using a panel of monoclonal antibodies, we detected full-length Mrp9 only in testicular germ cells and mouse sperm; we obtained no evidence for the existence of the truncated 100 kDa MRP9 protein reported previously. In contrast with other MRPs, neither murine Mrp9 nor the human MRP9 produced in MRP9-transfected HEK-293 cells (human embryonic kidney cells) appears to contain N-linked carbohydrates. In mouse and boar sperm, Mrp9 localizes to the midpiece, a structure containing all sperm mitochondria. However, immunolocalization microscopy and cell fractionation studies with transfected HEK-293 cells and mouse testis show that MRP9/Mrp9 does not localize to mitochondria. In HEK-293 cells, it is predominantly localized in the endoplasmic reticulum. We have been unable to demonstrate transport by MRP9 of substrates transported by other MRPs, such as drug conjugates and other organic anions.


Sign in / Sign up

Export Citation Format

Share Document