scholarly journals Semen-Specific Genetic Characteristics of Human Immunodeficiency Virus Type 1 env

2005 ◽  
Vol 79 (3) ◽  
pp. 1734-1742 ◽  
Author(s):  
Satish K. Pillai ◽  
Benjamin Good ◽  
Sergei Kosakovsky Pond ◽  
Joseph K. Wong ◽  
Matt C. Strain ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) in the male genital tract may comprise virus produced locally in addition to virus transported from the circulation. Virus produced in the male genital tract may be genetically distinct, due to tissue-specific cellular characteristics and immunological pressures. HIV-1 env sequences derived from paired blood and semen samples from the Los Alamos HIV Sequence Database were analyzed to ascertain a male genital tract-specific viral signature. Machine learning algorithms could predict seminal tropism based on env sequences with accuracies exceeding 90%, suggesting that a strong genetic signature does exist for virus replicating in the male genital tract. Additionally, semen-derived viral populations exhibited constrained diversity (P < 0.05), decreased levels of positive selection (P < 0.025), decreased CXCR4 coreceptor utilization, and altered glycosylation patterns. Our analysis suggests that the male genital tract represents a distinct selective environment that contributes to the apparent genetic bottlenecks associated with the sexual transmission of HIV-1.

2008 ◽  
Vol 24 (4) ◽  
pp. 561-571 ◽  
Author(s):  
Kurt Diem ◽  
David C. Nickle ◽  
Alexis Motoshige ◽  
Alan Fox ◽  
Susan Ross ◽  
...  

1998 ◽  
Vol 72 (1) ◽  
pp. 617-623 ◽  
Author(s):  
Eric L. Delwart ◽  
James I. Mullins ◽  
Phalguni Gupta ◽  
Gerald H. Learn ◽  
Mark Holodniy ◽  
...  

ABSTRACT Transmission of human immunodeficiency virus type 1 (HIV-1) usually results in outgrowth of viruses with macrophage-tropic phenotype and consensus non-syncytium-inducing (NSI) V3 loop sequences, despite the presence of virus with broader host range and the syncytium-inducing (SI) phenotype in the blood of many donors. We examined proviruses in contemporaneous peripheral blood mononuclear cells (PBMC) and nonspermatozoal semen mononuclear cells (NSMC) of five HIV-1-infected individuals to determine if this preferential outgrowth could be due to compartmentalization and thus preferential transmission of viruses of the NSI phenotype from the male genital tract. Phylogenetic reconstructions of ∼700-bp sequences covering the second constant region through the fifth variable region (C2 to V5) of the viral envelope gene revealed distinct variant populations in the blood versus the semen in two patients with AIDS and in one asymptomatic individual (patient 613), whereas similar variant populations were found in both compartments in two other asymptomatic individuals. Variants with amino acids in the V3 loop that predict the SI phenotype were found in both AIDS patients and in patient 613; however, the distribution of these variants between the two compartments was not consistent. SI variants were found only in the PBMC of one AIDS patient but only in the NSMC of the other, while they were found in both compartments in patient 613. It is therefore unlikely that restriction of SI variants from the male genital tract accounts for the observed NSI transmission bias. Furthermore, no evidence for a semen-specific signature amino acid sequence was detected.


2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Corey A. Williams-Wietzikoski ◽  
Mary S. Campbell ◽  
Rachel Payant ◽  
Airin Lam ◽  
Hong Zhao ◽  
...  

ABSTRACTTo better understand the transmission of human immunodeficiency virus type 1 (HIV-1), the genetic characteristics of blood and genital viruses from males were compared to those of the imputed founding virus population in their female partners. Initially serodiscordant heterosexual African couples with sequence-confirmed male-to-female HIV-1 transmission and blood and genital specimens collected near the time of transmission were studied. Single viral templates from blood plasma and genital tract RNA and DNA were sequenced across HIV-1envgp160. Eight of 29 couples examined yielded viral sequences from both tissues. Analysis of these couples’ sequences demonstrated, with one exception, that the women’s founding viral populations arose from a single viral variant and were CCR5 tropic, even though CXCR4 variants were detected within four males. The median genetic distance of the imputed most recent common ancestor of the women’s founder viruses showed that they were closer to the semen viruses than to the blood viruses of their transmitting male partner, but this finding was biased by detection of a greater number of viral clades in the blood. Using multiple assays, the blood and genital viruses were consistently found to be compartmentalized in only two of eight men. No distinct amino acid signatures in the men’s viruses were found to link to the women’s founders, nor did the women’senvsequences have shorter variable loops or fewer N-linked glycosylation sites. The lack of selective factors, except for coreceptor tropism, is consistent with others’ findings in male-to-female and high-risk transmissions. The infrequent compartmentalization between the transmitters’ blood and semen viruses suggests that cell-free blood virus likely includes HIV-1 sequences representative of those of viruses in semen.IMPORTANCEMucosal transmissions account for the majority of HIV-1 infections. Identification of the viral characteristics associated with transmission would facilitate vaccine design. This study of HIV strains from transmitting males and their seroconverting female partners found that the males’ genital tract viruses were rarely distinct from the blood variants. The imputed founder viruses in women were genetically similar to both the blood and genital tract variants of their male partners, indicating a lack of evidence for genital tract-specific lineages. These findings suggest that targeting vaccine responses to variants found in blood are likely to also protect from genital tract variants.


2009 ◽  
Vol 83 (17) ◽  
pp. 8596-8603 ◽  
Author(s):  
Earl Stoddard ◽  
Houping Ni ◽  
Georgetta Cannon ◽  
Chunhui Zhou ◽  
Neville Kallenbach ◽  
...  

ABSTRACT The human scavenger receptor gp340 has been identified as a binding protein for the human immunodeficiency virus type 1 (HIV-1) envelope that is expressed on the cell surface of female genital tract epithelial cells. This interaction allows such epithelial cells to efficiently transmit infective virus to susceptible targets and maintain viral infectivity for several days. Within the context of vaginal transmission, HIV must first traverse a normally protective mucosa containing a cell barrier to reach the underlying T cells and dendritic cells, which propagate and spread the infection. The mechanism by which HIV-1 can bypass an otherwise healthy cellular barrier remains an important area of study. Here, we demonstrate that genital tract-derived cell lines and primary human endocervical tissue can support direct transcytosis of cell-free virus from the apical to basolateral surfaces. Further, this transport of virus can be blocked through the addition of antibodies or peptides that directly block the interaction of gp340 with the HIV-1 envelope, if added prior to viral pulsing on the apical side of the cell or tissue barrier. Our data support a role for the previously described heparan sulfate moieties in mediating this transcytosis but add gp340 as an important facilitator of HIV-1 transcytosis across genital tract tissue. This study demonstrates that HIV-1 actively traverses the protective barriers of the human genital tract and presents a second mechanism whereby gp340 can promote heterosexual transmission.


1998 ◽  
Vol 72 (6) ◽  
pp. 5099-5107 ◽  
Author(s):  
Angélique B. van ’t Wout ◽  
Hetty Blaak ◽  
Leonie J. Ran ◽  
Margreet Brouwer ◽  
Carla Kuiken ◽  
...  

ABSTRACT To investigate the temporal relationship between human immunodeficiency virus type 1 (HIV-1) replicative capacity and syncytium-inducing (SI) phenotype, biological and genetic characteristics of longitudinally obtained virus clones from two HIV-1-infected individuals who developed SI variants were studied. In one individual, the emergence of rapidly replicating SI and non-syncytium-inducing (NSI) variants was accompanied by a loss of the slowly replicating NSI variants. In the other subject, NSI variants were always slowly replicating, while the coexisting SI variants showed an increase in the rate of replication. Irrespective their replicative capacity, the NSI variants remained present throughout the infection in both individuals. Phylogenetic analysis of the V3 region showed early branching of the SI variants from the NSI tree. Successful SI conversion seemed a unique event since no SI variants were found among later-stage NSI variants. This was also confirmed by the increasing evolutionary distance between the two subpopulations. At any time point during the course of the infection, the variation within the coexisting SI and NSI populations did not exceed 2%, indicating continuous competition within each viral subpopulation.


2001 ◽  
Vol 75 (11) ◽  
pp. 4964-4972 ◽  
Author(s):  
Thumbi Ndung'u ◽  
Boris Renjifo ◽  
Max Essex

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) subtype C is now the predominant subtype in the global epidemic. This subtype is encountered in southern Africa and parts of Asia, where the epidemic is rapidly spreading. One possible explanation for these epidemiological observations is that this subtype has genetic characteristics that may contribute to its spread and/or pathogenic potential. In this report, we describe the construction of MJ4, an infectious chimeric molecular clone of HIV-1 subtype C that replicates in donor peripheral blood mononuclear cells and macrophages. We also tested this clone for its ability to use the chemokine receptors CCR1, CCR2b, CCR3, CXCR4, and CCR5 and found that the clone utilizes only CCR5 as the coreceptor for cell entry. The MJ4 clone will be useful in further biological and virological characterization of HIV-1 subtype C and will be an important tool in the continuing efforts to understand what may constitute protective immunity in HIV-1. The clone may also be used in experimental design of vaccine candidates that may be directed against HIV-1 subtype C.


Sign in / Sign up

Export Citation Format

Share Document