scholarly journals Human Immunodeficiency Virus Type 1 Populations in Blood and Semen

1998 ◽  
Vol 72 (1) ◽  
pp. 617-623 ◽  
Author(s):  
Eric L. Delwart ◽  
James I. Mullins ◽  
Phalguni Gupta ◽  
Gerald H. Learn ◽  
Mark Holodniy ◽  
...  

ABSTRACT Transmission of human immunodeficiency virus type 1 (HIV-1) usually results in outgrowth of viruses with macrophage-tropic phenotype and consensus non-syncytium-inducing (NSI) V3 loop sequences, despite the presence of virus with broader host range and the syncytium-inducing (SI) phenotype in the blood of many donors. We examined proviruses in contemporaneous peripheral blood mononuclear cells (PBMC) and nonspermatozoal semen mononuclear cells (NSMC) of five HIV-1-infected individuals to determine if this preferential outgrowth could be due to compartmentalization and thus preferential transmission of viruses of the NSI phenotype from the male genital tract. Phylogenetic reconstructions of ∼700-bp sequences covering the second constant region through the fifth variable region (C2 to V5) of the viral envelope gene revealed distinct variant populations in the blood versus the semen in two patients with AIDS and in one asymptomatic individual (patient 613), whereas similar variant populations were found in both compartments in two other asymptomatic individuals. Variants with amino acids in the V3 loop that predict the SI phenotype were found in both AIDS patients and in patient 613; however, the distribution of these variants between the two compartments was not consistent. SI variants were found only in the PBMC of one AIDS patient but only in the NSMC of the other, while they were found in both compartments in patient 613. It is therefore unlikely that restriction of SI variants from the male genital tract accounts for the observed NSI transmission bias. Furthermore, no evidence for a semen-specific signature amino acid sequence was detected.

2005 ◽  
Vol 79 (3) ◽  
pp. 1734-1742 ◽  
Author(s):  
Satish K. Pillai ◽  
Benjamin Good ◽  
Sergei Kosakovsky Pond ◽  
Joseph K. Wong ◽  
Matt C. Strain ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) in the male genital tract may comprise virus produced locally in addition to virus transported from the circulation. Virus produced in the male genital tract may be genetically distinct, due to tissue-specific cellular characteristics and immunological pressures. HIV-1 env sequences derived from paired blood and semen samples from the Los Alamos HIV Sequence Database were analyzed to ascertain a male genital tract-specific viral signature. Machine learning algorithms could predict seminal tropism based on env sequences with accuracies exceeding 90%, suggesting that a strong genetic signature does exist for virus replicating in the male genital tract. Additionally, semen-derived viral populations exhibited constrained diversity (P < 0.05), decreased levels of positive selection (P < 0.025), decreased CXCR4 coreceptor utilization, and altered glycosylation patterns. Our analysis suggests that the male genital tract represents a distinct selective environment that contributes to the apparent genetic bottlenecks associated with the sexual transmission of HIV-1.


2008 ◽  
Vol 24 (4) ◽  
pp. 561-571 ◽  
Author(s):  
Kurt Diem ◽  
David C. Nickle ◽  
Alexis Motoshige ◽  
Alan Fox ◽  
Susan Ross ◽  
...  

1998 ◽  
Vol 72 (5) ◽  
pp. 3646-3657 ◽  
Author(s):  
Roberto Salvi ◽  
Anna Rosa Garbuglia ◽  
Antonino Di Caro ◽  
Simonetta Pulciani ◽  
Francesco Montella ◽  
...  

ABSTRACT We have been investigating a long-term nonprogressor who was found to be human immunodeficiency virus type 1 (HIV-1) seropositive in 1985 and has survived with stable CD4+ T-cell counts (>1,000 CD4 cells/μl) without any AIDS-related illness. We have previously reported that repeated attempts to measure HIV-1 RNA in the peripheral mononuclear cells obtained from this subject have invariably failed. In the present study, we have analyzed the molecular nature of the HIV-1 quasispecies infecting this patient by PCR amplification of two proviral regions, the 5′ long terminal repeat (5′LTR)/gagleader and the nef gene, directly from fresh uncultured peripheral mononuclear cells, followed by length polymorphism analysis (with 1994, 1995, and 1996 samples) and sequencing (with a 1996 sample). Only proviral forms with nef deletions were revealed by length polymorphism analysis in samples from all three time points. Sequence analysis of the nef gene from the 1996 sample confirmed the presence of similar proviral quasispecies characterized by the presence of several deletions located in thenef-alone and the nef/U3 overlapping regions. Length polymorphism analysis of the 5′LTR/gag leader region suggested the existence of two major quasispecies populations, one characterized by the presence of forms carrying deletions in the U3 region and the other showing a completely intact, full-length 5′LTR. Evidence of the role of nef gene defects in long-term survival of HIV-1-infected patients has been provided so far in two independent investigations involving patients infected with HIV through blood transfusion. Here we show the existence of a similar condition in a subject who acquired HIV-1 seropositivity through the sexual route.


2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Corey A. Williams-Wietzikoski ◽  
Mary S. Campbell ◽  
Rachel Payant ◽  
Airin Lam ◽  
Hong Zhao ◽  
...  

ABSTRACTTo better understand the transmission of human immunodeficiency virus type 1 (HIV-1), the genetic characteristics of blood and genital viruses from males were compared to those of the imputed founding virus population in their female partners. Initially serodiscordant heterosexual African couples with sequence-confirmed male-to-female HIV-1 transmission and blood and genital specimens collected near the time of transmission were studied. Single viral templates from blood plasma and genital tract RNA and DNA were sequenced across HIV-1envgp160. Eight of 29 couples examined yielded viral sequences from both tissues. Analysis of these couples’ sequences demonstrated, with one exception, that the women’s founding viral populations arose from a single viral variant and were CCR5 tropic, even though CXCR4 variants were detected within four males. The median genetic distance of the imputed most recent common ancestor of the women’s founder viruses showed that they were closer to the semen viruses than to the blood viruses of their transmitting male partner, but this finding was biased by detection of a greater number of viral clades in the blood. Using multiple assays, the blood and genital viruses were consistently found to be compartmentalized in only two of eight men. No distinct amino acid signatures in the men’s viruses were found to link to the women’s founders, nor did the women’senvsequences have shorter variable loops or fewer N-linked glycosylation sites. The lack of selective factors, except for coreceptor tropism, is consistent with others’ findings in male-to-female and high-risk transmissions. The infrequent compartmentalization between the transmitters’ blood and semen viruses suggests that cell-free blood virus likely includes HIV-1 sequences representative of those of viruses in semen.IMPORTANCEMucosal transmissions account for the majority of HIV-1 infections. Identification of the viral characteristics associated with transmission would facilitate vaccine design. This study of HIV strains from transmitting males and their seroconverting female partners found that the males’ genital tract viruses were rarely distinct from the blood variants. The imputed founder viruses in women were genetically similar to both the blood and genital tract variants of their male partners, indicating a lack of evidence for genital tract-specific lineages. These findings suggest that targeting vaccine responses to variants found in blood are likely to also protect from genital tract variants.


2001 ◽  
Vol 75 (16) ◽  
pp. 7266-7279 ◽  
Author(s):  
Dai Wang ◽  
Cynthia de la Fuente ◽  
Longwen Deng ◽  
Lai Wang ◽  
Irene Zilberman ◽  
...  

ABSTRACT Cyclin-dependent kinases (cdk's) have recently been suggested to regulate human immunodeficiency virus type 1 (HIV-1) transcription. Previously, we have shown that expression of one cdk inhibitor, p21/Waf1, is abrogated in HIV-1 latently infected cells. Based on this result, we investigated the transcription of HIV-1 in the presence of chemical drugs that specifically inhibited cdk activity and functionally mimicked p21/Waf1 activity. HIV-1 production in virally integrated lymphocytic and monocytic cell lines, such as ACH2, 8E5, and U1, as well as activated peripheral blood mononuclear cells infected with syncytium-inducing (SI) or non-syncytium-inducing (NSI) HIV-1 strains, were all inhibited by Roscovitine, a purine derivative that reversibly competes for the ATP binding site present in cdk's. The decrease in viral progeny in the HIV-1-infected cells was correlated with a decrease in the transcription of HIV-1 RNAs in cells treated with Roscovitine and not with the non-cdk general cell cycle inhibitors, such as hydroxyurea (G1/S blocker) or nocodazole (M-phase blocker). Cyclin A- and E-associated histone H1 kinases, as well as cdk 7 and 9 activities, were all inhibited in the presence of Roscovitine. The 50% inhibitory concentration of Roscovitine on cdk's 9 and 7 was determined to be ∼0.6 μM. Roscovitine could selectively sensitize HIV-1-infected cells to apoptosis at concentrations that did not impede the growth and proliferation of uninfected cells. Apoptosis induced by Roscovitine was found in both latent and activated infected cells, as evident by Annexin V staining and the cleavage of the PARP protein by caspase-3. More importantly, contrary to many apoptosis-inducing agents, where the apoptosis of HIV-1-infected cells accompanies production and release of infectious HIV-1 viral particles, Roscovitine treatment selectively killed HIV-1-infected cells without virion release. Collectively, our data suggest that cdk's are required for efficient HIV-1 transcription and, therefore, we propose specific cdk inhibitors as potential antiviral agents in the treatment of AIDS.


2009 ◽  
Vol 83 (17) ◽  
pp. 8596-8603 ◽  
Author(s):  
Earl Stoddard ◽  
Houping Ni ◽  
Georgetta Cannon ◽  
Chunhui Zhou ◽  
Neville Kallenbach ◽  
...  

ABSTRACT The human scavenger receptor gp340 has been identified as a binding protein for the human immunodeficiency virus type 1 (HIV-1) envelope that is expressed on the cell surface of female genital tract epithelial cells. This interaction allows such epithelial cells to efficiently transmit infective virus to susceptible targets and maintain viral infectivity for several days. Within the context of vaginal transmission, HIV must first traverse a normally protective mucosa containing a cell barrier to reach the underlying T cells and dendritic cells, which propagate and spread the infection. The mechanism by which HIV-1 can bypass an otherwise healthy cellular barrier remains an important area of study. Here, we demonstrate that genital tract-derived cell lines and primary human endocervical tissue can support direct transcytosis of cell-free virus from the apical to basolateral surfaces. Further, this transport of virus can be blocked through the addition of antibodies or peptides that directly block the interaction of gp340 with the HIV-1 envelope, if added prior to viral pulsing on the apical side of the cell or tissue barrier. Our data support a role for the previously described heparan sulfate moieties in mediating this transcytosis but add gp340 as an important facilitator of HIV-1 transcytosis across genital tract tissue. This study demonstrates that HIV-1 actively traverses the protective barriers of the human genital tract and presents a second mechanism whereby gp340 can promote heterosexual transmission.


2005 ◽  
Vol 79 (10) ◽  
pp. 6089-6101 ◽  
Author(s):  
Bruce K. Brown ◽  
Janice M. Darden ◽  
Sodsai Tovanabutra ◽  
Tamara Oblander ◽  
Julie Frost ◽  
...  

ABSTRACT A critical priority for human immunodeficiency virus type 1 (HIV-1) vaccine development is standardization of reagents and assays for evaluation of immune responses elicited by candidate vaccines. To provide a panel of viral reagents from multiple vaccine trial sites, 60 international HIV-1 isolates were expanded in peripheral blood mononuclear cells and characterized both genetically and biologically. Ten isolates each from clades A, B, C, and D and 10 isolates each from CRF01_AE and CRF02_AG were prepared from individuals whose HIV-1 infection was evaluated by complete genome sequencing. The main criterion for selection was that the candidate isolate was pure clade or pure circulating recombinant. After expansion in culture, the complete envelope (gp160) of each isolate was verified by sequencing. The 50% tissue culture infectious dose and p24 antigen concentration for each viral stock were determined; no correlation between these two biologic parameters was found. Syncytium formation in MT-2 cells and CCR5 or CXCR4 coreceptor usage were determined for all isolates. Isolates were also screened for neutralization by soluble CD4, a cocktail of monoclonal antibodies, and a pool of HIV-1-positive patient sera. The panel consists of 49 nonsyncytium-inducing isolates that use CCR5 as a major coreceptor and 11 syncytium-inducing isolates that use only CXCR4 or both coreceptors. Neutralization profiles suggest that the panel contains both neutralization-sensitive and -resistant isolates. This collection of HIV-1 isolates represents the six major globally prevalent strains, is exceptionally large and well characterized, and provides an important resource for standardization of immunogenicity assessment in HIV-1 vaccine trials.


2007 ◽  
Vol 52 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Weihong Lai ◽  
Li Huang ◽  
Phong Ho ◽  
Zhijun Li ◽  
David Montefiori ◽  
...  

ABSTRACT Betulinic acid (BA) derivatives can inhibit human immunodeficiency virus type 1 (HIV-1) entry or maturation depending on side chain modifications. While BA derivatives with antimaturation activity have attracted considerable interest, the anti-HIV-1 profile and molecular mechanism of BA derivatives with anti-HIV-1 entry activity (termed BA entry inhibitors) have not been well defined. In this study, we have found that two BA entry inhibitors, IC9564 and A43D, exhibited a broad spectrum of anti-HIV-1 activity. Both compounds inhibited multiple strains of HIV-1 from clades A, B, and C at submicromolar concentrations. Clade C viruses were more sensitive to the compounds than clade A and B viruses. Interestingly, IC9564 at subinhibitory concentrations could alter the antifusion activities of other entry inhibitors. IC9564 was especially potent in increasing the sensitivity of HIV-1YU2 Env-mediated membrane fusion to the CCR5 inhibitor TAK-779. Results from this study suggest that the V3 loop of gp120 is a critical determinant for the anti-HIV-1 activity of IC9564. IC9564 escape viruses contained mutations near the tip of the V3 loop. Moreover, IC9564 could compete with the binding of V3 monoclonal antibodies 447-52D and 39F. IC9564 also competed with the binding of gp120/CD4 complexes to chemokine receptors. In summary, these results suggest that BA entry inhibitors can potently inhibit a broad spectrum of primary HIV-1 isolates by targeting the V3 loop of gp120.


1991 ◽  
Vol 174 (6) ◽  
pp. 1557-1563 ◽  
Author(s):  
S B Jiang ◽  
K Lin ◽  
A R Neurath

Human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (gp120 and gp41) elicit virus-neutralizing antibodies (VNAB) and also antibodies enhancing HIV-1 infection (EAB). Several epitopes eliciting VNAB have been defined, the principal virus-neutralizing determinant being assigned to the V3 loop of gp120. To provide a background for a rational design of anti-HIV vaccines, it also appears important to define domains eliciting EAB. This was accomplished by screening antisera against synthetic peptides covering almost the entire sequence of gp120/gp41 for their enhancing effects on HIV-1 infection of MT-2 cells, a continuous T cell line. Many (16/30) of the antisera significantly enhanced HIV-1 in the presence of human complement. Antibodies to complement receptor type 2 (CR2) abrogated the antibody-mediated enhancement of HIV-1 infection. Antisera to V3 hypervariable loops of 21 distinct HIV-1 isolates were also tested for their enhancing effects on HIV-1IIIB infection. 11 of these sera contained VNAB and 10 enhanced HIV-1IIIB infection. All antisera with virus-enhancing activity contained antibodies crossreactive with the V3 loop of HIV-1IIIB, and the virus-enhancing activity increased with increasing serological crossreactivity. These results suggest that immunization with antigens encompassing V3 loops may elicit EAB rather than protective antibodies if epitopes on the immunogen and the predominant HIV-1 isolate infecting a population are insufficiently matched, i.e., crossreactive serologically but not at the level of virus neutralization.


Sign in / Sign up

Export Citation Format

Share Document