replicative capacity
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 15)

H-INDEX

34
(FIVE YEARS 2)

Author(s):  
Manel Essaidi-Laziosi ◽  
Catia Alvarez ◽  
Olha Puhach ◽  
Pascale Sattonnet-Roche ◽  
Giulia Torriani ◽  
...  

2021 ◽  
Author(s):  
Vinicius A. Vieira ◽  
Emily Adland ◽  
Nicholas E. Grayson ◽  
Anna Csala ◽  
Fa’eeda Richards ◽  
...  

HIV-specific CD8+ T-cells play a central role in immune control of adult HIV, but their contribution in paediatric infection is less well-characterised. Previously, we identified a group of ART-naïve children with persistently undetectable plasma viraemia, termed ‘elite controllers’, and a second group who achieved aviraemia only transiently. To investigate the mechanisms of failure to maintain aviraemia, we characterized in three transient aviraemics (TAs), each of whom expressed the disease-protective HLA-B*81:01, longitudinal HIV-specific T-cell activity and viral sequences. In two TAs, a CD8+ T-cell response targeting the immunodominant epitope TPQDLNTML (‘Gag-TL9’) was associated with viral control, followed by viral rebound and the emergence of escape variants with lower replicative capacity. Both TAs mounted variant-specific responses, but only at low functional avidity, resulting in immunological progression. By contrast, in TA-3, intermittent viraemic episodes followed aviraemia without virus escape or a diminished CD4+ T-cell count. High quality and magnitude of the CD8+ T-cell response was associated with aviraemia. We therefore identify two distinct mechanisms of loss of viral control. In one scenario, CD8+ T-cell responses initially cornered low replicative capacity escape variants, but with insufficient avidity to prevent viraemia and disease progression. In the other, loss of viral control was associated neither with virus escape nor progression, but with a decrease in the quality of the CD8+ T-cell response, followed by recovery of viral control in association with improved antiviral response. These data suggest the potential for a consistently strong and polyfunctional antiviral response to achieve long-term viral control without escape. IMPORTANCE Very early initiation of antiretroviral therapy (ART) in paediatric HIV infection offers a unique opportunity to limit the size and diversity of the viral reservoir. However, only exceptionally is ART alone sufficient to achieve remission. Additional interventions are therefore required that likely include contributions from host immunity. The HIV-specific T-cell response plays a central role in immune control of adult HIV, often mediated through protective alleles such as HLA-B*57/58:01/81:01. However, due to the tolerogenic and type 2 biased immune response in early life, HLA-I-mediated immune suppression of viraemia is seldom observed in children. We describe a rare group of HLA-B*81:01-positive, ART-naïve children who achieved aviraemia, albeit only transiently, and investigate the role of the CD8+ T-cell response in the establishment and loss of viral control. We identify a mechanism by which the HIV-specific response can achieve viraemic control without viral escape, that can be explored in strategies to achieve remission.


Author(s):  
Nawazish Naqvi ◽  
Siiri E. Iismaa ◽  
Robert M. Graham ◽  
Ahsan Husain

Heart failure in adults is a leading cause of morbidity and mortality worldwide. It can arise from a variety of diseases, with most resulting in a loss of cardiomyocytes that cannot be replaced due to their inability to replicate, as well as to a lack of resident cardiomyocyte progenitor cells in the adult heart. Identifying and exploiting mechanisms underlying loss of developmental cardiomyocyte replicative capacity has proved to be useful in developing therapeutics to effect adult cardiac regeneration. Of course, effective regeneration of myocardium after injury requires not just expansion of cardiomyocytes, but also neovascularization to allow appropriate perfusion and resolution of injury-induced inflammation and interstitial fibrosis, but also reversal of adverse left ventricular remodeling. In addition to overcoming these challenges, a regenerative therapy needs to be safe and easily translatable. Failure to address these critical issues will delay the translation of regenerative approaches. This review critically analyzes current regenerative approaches while also providing a framework for future experimental studies aimed at enhancing success in regenerating the injured heart.


2021 ◽  
Vol 166 (3) ◽  
pp. 935-941
Author(s):  
Wenwen Xiao ◽  
Xunlei Wang ◽  
Jing Wang ◽  
Puxian Fang ◽  
Shaobo Xiao ◽  
...  
Keyword(s):  

2020 ◽  
Vol 16 (9) ◽  
pp. e1008853
Author(s):  
Gladys N. Macharia ◽  
Ling Yue ◽  
Ecco Staller ◽  
Dario Dilernia ◽  
Daniel Wilkins ◽  
...  

2020 ◽  
Vol 75 (9) ◽  
pp. 2535-2546
Author(s):  
Oscar Blanch-Lombarte ◽  
José R Santos ◽  
Ruth Peña ◽  
Esther Jiménez-Moyano ◽  
Bonaventura Clotet ◽  
...  

Abstract Background Virological failure (VF) to boosted PIs with a high genetic barrier is not usually linked to the development of resistance-associated mutations in the protease gene. Methods From a cohort of 520 HIV-infected subjects treated with lopinavir/ritonavir or darunavir/ritonavir monotherapy, we retrospectively identified nine patients with VF. We sequenced the HIV-1 Gag-protease region and generated clonal virus from plasma samples. We characterized phenotypically clonal variants in terms of replicative capacity and susceptibility to PIs. Also, we used VESPA to identify signature mutations and 3D molecular modelling information to detect conformational changes in the Gag region. Results All subjects analysed harboured Gag-associated polymorphisms in the absence of resistance mutations in the protease gene. Most Gag changes occurred outside Gag cleavage sites. VESPA analyses identified K95R and R286K (P < 0.01) as signature mutations in Gag present at VF. In one out of four patients with clonal analysis available, we identified clonal variants with high replicative capacity and 8- to 13-fold reduction in darunavir susceptibility. These clonal variants harboured K95R, R286K and additional mutations in Gag. Low susceptibility to darunavir was dependent on the Gag sequence context. All other clonal variants analysed preserved drug susceptibility and virus replicative capacity. Conclusions Gag mutations may reduce darunavir susceptibility in the absence of protease mutations while preserving viral fitness. This effect is Gag-sequence context dependent and may occur during boosted PI failure.


2020 ◽  
Vol 94 (13) ◽  
Author(s):  
Ming-Han Chloe Tsai ◽  
Supriya Singh ◽  
Emily Adland ◽  
Philip Goulder

ABSTRACT HLA-B*52:01 is strongly associated with protection against HIV disease progression. However, the mechanisms of HLA-B*52:01-mediated immune control have not been well studied. We here describe a cohort with a majority of HIV C-clade-infected individuals from Delhi, India, where HLA-B*52:01 is highly prevalent (phenotypic frequency, 22.5%). Consistent with studies of other cohorts, expression of HLA-B*52:01 was associated with high absolute CD4 counts and therefore a lack of HIV disease progression. We here examined the impact of HLA-B*52:01-associated viral polymorphisms within the immunodominant C clade Gag epitope RMTSPVSI (here, RI8; Gag residues 275 to 282) on viral replicative capacity (VRC) since HLA-mediated reduction in VRC is a central mechanism implicated in HLA-associated control of HIV. We observed in HLA-B*52:01-positive individuals a higher frequency of V280T, V280S, and V280A variants within RI8 (P = 0.0001). Each of these variants reduced viral replicative capacity in C clade viruses, particularly the V280A variant (P < 0.0001 in both the C clade consensus and in the Indian study cohort consensus p24 Gag backbone), which was also associated with significantly higher absolute CD4 counts in the donors (median, 941.5 cells/mm3; P = 0.004). A second HLA-B*52:01-associated mutation, K286R, flanking HLA-B*52:01-RI8, was also analyzed. Although selected in HLA-B*52:01-positive subjects often in combination with the V280X variants, this mutation did not act as a compensatory mutant but, indeed, further reduced VRC. These data are therefore consistent with previous work showing that HLA-B molecules that are associated with immune control of HIV principally target conserved epitopes within the capsid protein, escape from which results in a significant reduction in VRC. IMPORTANCE Few studies have addressed the mechanisms of immune control in HIV-infected subjects in India, where an estimated 2.7 million people are living with HIV. We focus here on a study cohort in Delhi on one of the most prevalent HLA-B alleles, HLA-B*52:01, present in 22.5% of infected individuals. HLA-B*52:01 has consistently been shown in other cohorts to be associated with protection against HIV disease progression, but studies have been limited by the low prevalence of this allele in North America and Europe. Among the C-clade-infected individuals, we show that HLA-B*52:01 is the most protective of all the HLA-B alleles expressed in the Indian cohort and is associated with the highest absolute CD4 counts. Further, we show that the mechanism by which HLA-B*52:01 mediates immune protection is, at least in part, related to the inability of HIV to evade the HLA-B*52:01-restricted p24 Gag-specific CD8+ T-cell response without incurring a significant loss to viral replicative capacity.


BMC Medicine ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Daniel M. Muema ◽  
Ngomu A. Akilimali ◽  
Okechukwu C. Ndumnego ◽  
Sipho S. Rasehlo ◽  
Raveshni Durgiah ◽  
...  

2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Lawrence J. Tartaglia ◽  
Siddhant Gupte ◽  
Kevin C. Pastores ◽  
Sebastien Trott ◽  
Peter Abbink ◽  
...  

ABSTRACT Simian-human immunodeficiency virus (SHIV) infection of rhesus monkeys is an important preclinical model for human immunodeficiency virus type 1 (HIV-1) vaccines, therapeutics, and cure strategies. SHIVs have been optimized by incorporating HIV-1 Env residue 375 mutations that mimic the bulky or hydrophobic residues typically found in simian immunodeficiency virus (SIV) Env to improve rhesus CD4 binding. We applied this strategy to three SHIV challenge stocks (SHIV-SF162p3, SHIV-AE16, and SHIV-325c) and observed three distinct outcomes. We constructed six Env375 variants (M, H, W, Y, F, and S) for each SHIV, and we performed a pool competition study in rhesus monkeys to define the optimal variant for each SHIV prior to generating large-scale challenge stocks. We identified SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH as the optimal variants. SHIV-SF162p3S could not be improved, as it already contained the optimal Env375 residue. SHIV-AE16W exhibited a similar replicative capacity to the parental SHIV-AE16 stock. In contrast, SHIV-325cH demonstrated a 2.6-log higher peak and 1.6-log higher setpoint viral loads than the parental SHIV-325c stock. These data demonstrate the diversity of potential outcomes following Env375 modification in SHIVs. Moreover, the clade C SHIV-325cH challenge stock may prove useful for evaluating prophylactic or therapeutic interventions against clade C HIV-1. IMPORTANCE We sought to enhance the infectivity of three SHIV stocks by optimization of a key residue in human immunodeficiency virus type 1 (HIV-1) Env (Env375). We developed the following three new simian-human immunodeficiency virus (SHIV) stocks: SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH. SHIV-SF162p3S could not be optimized, SHIV-AE16W proved comparable to the parental virus, and SHIV-325cH demonstrated markedly enhanced replicative capacity compared with the parental virus.


Sign in / Sign up

Export Citation Format

Share Document