scholarly journals ICP27 Interacts with the C-Terminal Domain of RNA Polymerase II and Facilitates Its Recruitment to Herpes Simplex Virus 1 Transcription Sites, Where It Undergoes Proteasomal Degradation during Infection

2006 ◽  
Vol 80 (7) ◽  
pp. 3567-3581 ◽  
Author(s):  
Jenny Q. Dai-Ju ◽  
Ling Li ◽  
Lisa A. Johnson ◽  
Rozanne M. Sandri-Goldin

ABSTRACT Herpes simplex virus 1 (HSV-1) ICP27 has been shown to interact with RNA polymerase II (RNAP II) holoenzyme. Here, we show that ICP27 interacts with the C-terminal domain (CTD) of RNAP II and that ICP27 mutants that cannot interact fail to relocalize RNAP II to viral transcription sites, suggesting a role for ICP27 in RNAP II recruitment. Using monoclonal antibodies specific for different phosphorylated forms of the RNAP II CTD, we found that the serine-2 phosphorylated form, which is found predominantly in elongating complexes, was not recruited to viral transcription sites. Further, there was an overall reduction in phosphoserine-2 staining. Western blot analysis revealed that there was a pronounced decrease in the phosphoserine-2 form and in overall RNAP II levels in lysates from cells infected with wild-type HSV-1. There was no appreciable difference in cdk9 levels, suggesting that protein degradation rather than dephosphorylation was occurring. Treatment of infected cells with proteasome inhibitors MG-132 and lactacystin prevented the decrease in the phosphoserine-2 form and in overall RNAP II levels; however, there was a concomitant decrease in the levels of several HSV-1 late proteins and in virus yield. Proteasomal degradation has been shown to resolve stalled RNAP II complexes at sites of DNA damage to allow 3′ processing of transcripts. Thus, we propose that at later times of infection when robust transcription and DNA replication are occurring, elongating complexes may collide and proteasomal degradation may be required for resolution.

2007 ◽  
Vol 81 (10) ◽  
pp. 5091-5101 ◽  
Author(s):  
Kathryn A. Fraser ◽  
Stephen A. Rice

ABSTRACT During eukaryotic mRNA transcription, the synthetic activity and mRNA processing factor interactions of RNA polymerase II (RNAP II) are regulated by phosphorylation of its carboxyl-terminal domain (CTD), with modification occurring primarily on serines 2 and 5 of the CTD. We previously showed that herpes simplex virus type 1 (HSV-1) infection rapidly triggers the loss of RNAP II forms bearing serine 2 phosphorylation (Ser-2P RNAP II). Here we show that the HSV-1 immediate-early (IE) protein ICP22 is responsible for this effect during the IE phase of infection. This activity does not require the viral UL13 protein kinase, which is required for several other regulatory functions of ICP22. Additionally, we show that transient expression of ICP22 can trigger the loss of Ser-2P RNAP II in transfected cells. Thus, the ability of ICP22 to cause the loss of Ser-2 RNAP II does not require other viral factors or the context of the infected cell. Expression of the HSV-1 ICP22-related protein US1.5, which corresponds to residues 147 to 420 of ICP22, also triggers a loss of Ser-2P RNAP II in transfected cells, whereas expression of the varicella-zoster virus ICP22 homolog, ORF63, does not. Our study also provides evidence for a second, viral late gene-dependent pathway that triggers loss of Ser-2P RNAP II in infected cells, consistent with the recent work of Dai-Ju et al. (J. Q. Dai-Ju, L. Li, L. A. Johnson, and R. M. Sandri-Goldin, J. Virol. 80:3567-3581, 2006). Therefore, it appears that HSV-1 has evolved redundant mechanisms for triggering the loss of a specific phosphorylated form of RNAP II.


2015 ◽  
Vol 90 (5) ◽  
pp. 2503-2513 ◽  
Author(s):  
Robert G. Abrisch ◽  
Tess M. Eidem ◽  
Petro Yakovchuk ◽  
Jennifer F. Kugel ◽  
James A. Goodrich

ABSTRACTLytic infection by herpes simplex virus 1 (HSV-1) triggers a change in many host cell programs as the virus strives to express its own genes and replicate. Part of this process is repression of host cell transcription by RNA polymerase II (Pol II), which also transcribes the viral genome. Here, we describe a global characterization of Pol II occupancy on the viral and host genomes in response to HSV-1 infection using chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). The data reveal near-complete loss of Pol II occupancy throughout host cell mRNA genes, in both their bodies and promoter-proximal regions. Increases in Pol II occupancy of host cell genes, which would be consistent with robust transcriptional activation, were not observed. HSV-1 infection induced a more potent and widespread repression of Pol II occupancy than did heat shock, another cellular stress that widely represses transcription. Concomitant with the loss of host genome Pol II occupancy, we observed Pol II covering the HSV-1 genome, reflecting a high level of viral gene transcription. Interestingly, the positions of the peaks of Pol II occupancy at HSV-1 and host cell promoters were different. The primary peak of Pol II occupancy at HSV-1 genes is ∼170 bp upstream of where it is positioned at host cell genes, suggesting that specific steps in transcription are regulated differently at HSV-1 genes than at host cell mRNA genes.IMPORTANCEWe investigated the effect of herpes simplex virus 1 (HSV-1) infection on transcription of host cell and viral genes by RNA polymerase II (Pol II). The approach we used was to determine how levels of genome-bound Pol II changed after HSV-1 infection. We found that HSV-1 caused a profound loss of Pol II occupancy across the host cell genome. Increases in Pol II occupancy were not observed, showing that no host genes were activated after infection. In contrast, Pol II occupied the entire HSV-1 genome. Moreover, the pattern of Pol II at HSV-1 genes differed from that on host cell genes, suggesting a unique mode of viral gene transcription. These studies provide new insight into how HSV-1 causes changes in the cellular program of gene expression and how the virus coopts host Pol II for its own use.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Claire H. Birkenheuer ◽  
Joel D. Baines

ABSTRACT Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (Pol II). Expression of viral immediate early (α) genes is followed sequentially by early (β), late (γ1), and true late (γ2) genes. We used precision nuclear run-on with deep sequencing to map and to quantify Pol II on the HSV-1(F) genome with single-nucleotide resolution. Approximately 30% of total Pol II relocated to viral genomes within 3 h postinfection (hpi), when it occupied genes of all temporal classes. At that time, Pol II on α genes accumulated most heavily at promoter-proximal pause (PPP) sites located ∼60 nucleotides downstream of the transcriptional start site, while β genes bore Pol II more evenly across gene bodies. At 6 hpi, Pol II increased on γ1 and γ2 genes while Pol II pausing remained prominent on α genes. At that time, average cytoplasmic mRNA expression from α and β genes decreased, relative to levels at 3 hpi, while γ1 relative expression increased slightly and γ2 expression increased more substantially. Cycloheximide treatment during the first 3 h reduced the amount of Pol II associated with the viral genome and confined most of the remaining Pol II to α gene PPP sites. Inhibition of both cyclin-dependent kinase 9 activity and viral DNA replication reduced Pol II on the viral genome and restricted much of the remaining Pol II to PPP sites. IMPORTANCE These data suggest that viral transcription is regulated not only by Pol II recruitment to viral genes but also by control of elongation into viral gene bodies. We provide a detailed map of Pol II occupancy on the HSV-1 genome that clarifies features of the viral transcriptome, including the first identification of Pol II PPP sites. The data indicate that Pol II is recruited to late genes early in infection. Comparing α and β gene occupancy at PPP sites and gene bodies suggests that Pol II is released more efficiently into the bodies of β genes than α genes at 3 hpi and that repression of α gene expression late in infection is mediated by prolonged promoter-proximal pausing. In addition, DNA replication is required to maintain full Pol II occupancy on viral DNA and to promote elongation on late genes later in infection.


2021 ◽  
Author(s):  
Adam W Whisnant ◽  
Oliver Mathias Dyck Dionisi ◽  
Arnhild Grothey ◽  
Julia M Rappold ◽  
Ana Luiza Marante ◽  
...  

Transcriptional activity of RNA polymerase II (Pol II) is orchestrated by post-translational modifications of the C-terminal domain (CTD) of the largest Pol II subunit, RPB1. Herpes Simplex Virus type 1 (HSV-1) usurps the cellular transcriptional machinery during lytic infection to efficiently express viral mRNA and shut down host gene expression. The viral immediate-early protein ICP22 interferes with serine 2 phosphorylation (pS2) of the Pol II CTD by targeting CDK9. The functional implications of this are poorly understood. Here, we report that HSV-1 also induces a global loss of serine 7 phosphorylation (pS7). This effect was dependent on the expression of the two viral immediate-early proteins, ICP22 and ICP27. While lytic HSV-1 infection results in efficient Pol II degradation late in infection, we show that pS2/S7 loss precedes the drop in Pol II level. Interestingly, mutation of the RPB1 polyubiquitination site mutation K1268, which prevents proteasomal RPB1 degradation during transcription-coupled DNA repair, displayed loss of pS2/S7 but retained much higher overall RPB1 protein levels even at late times of infection, indicating that this pathway mediates bulk Pol II protein loss late in infection but is not involved in early CTD dysregulation. Using α-amanitin-resistant CTD mutants, we observed differential requirements for Ser2 and Ser7 for production of viral proteins, with Ser2 facilitating viral immediate-early gene expression and Ser7 appearing dispensable. Despite dysregulation of CTD phosphorylation and different requirements for Ser2/7, all CTD modifications tested could be visualized in viral replication compartments by immunofluorescence. These data expand the known means that HSV-1 employs to create pro-viral transcriptional environments at the expense of host responses.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2072
Author(s):  
Petra Bergström ◽  
Edward Trybala ◽  
Charlotta E. Eriksson ◽  
Maria Johansson ◽  
Tugce Munise Satir ◽  
...  

Herpes simplex virus 1 (HSV-1) and 2 (HSV-2) can infect the central nervous system (CNS) with dire consequences; in children and adults, HSV-1 may cause focal encephalitis, while HSV-2 causes meningitis. In neonates, both viruses can cause severe, disseminated CNS infections with high mortality rates. Here, we differentiated human induced pluripotent stem cells (iPSCs) towards cortical neurons for infection with clinical CNS strains of HSV-1 or HSV-2. Progenies from both viruses were produced at equal quantities in iPSCs, neuroprogenitors and cortical neurons. HSV-1 and HSV-2 decreased viability of neuroprogenitors by 36.0% and 57.6% (p < 0.0001), respectively, 48 h post-infection, while cortical neurons were resilient to infection by both viruses. However, in these functional neurons, both HSV-1 and HSV-2 decreased gene expression of two markers of synaptic activity, CAMK2B and ARC, and affected synaptic activity negatively in multielectrode array experiments. However, unaltered secretion levels of the neurodegeneration markers tau and NfL suggested intact axonal integrity. Viral replication of both viruses was found after six days, coinciding with 6-fold and 22-fold increase in gene expression of cellular RNA polymerase II by HSV-1 and HSV-2, respectively. Our results suggest a resilience of human cortical neurons relative to the replication of HSV-1 and HSV-2.


2021 ◽  
Author(s):  
Sarah E Dremel ◽  
Frances L Sivrich ◽  
Jessica M Tucker ◽  
Britt A Glaunsinger ◽  
Neal A DeLuca

RNA Polymerase III (Pol III) transcribes noncoding RNA, including transfer RNA (tRNA), and acts as a pathogen sensor during the innate immune response. To promote enhanced proliferation, the Pol III machinery is commonly targeted during cancer and viral infection. Herein we employ DM-RNA-Seq, 4SU-Seq, ChIP-Seq, and ATAC-Seq to characterize how Herpes Simplex Virus-1 (HSV-1) perturbs the Pol III landscape. We find that HSV-1 stimulates tRNA expression 10-fold, with mature tRNAs exhibiting a 2-fold increase within 12 hours of infection. Perturbation of host tRNA synthesis requires nuclear viral entry, but not synthesis of specific viral transcripts, nascent viral genomes, or viral progeny. Host tRNA with a specific codon bias were not targeted, rather increased transcription was observed from euchromatic, actively transcribed loci. tRNA upregulation is linked to unique crosstalk between the Pol II and III transcriptional machinery. While viral infection is known to mediate host transcriptional shut off and lead to a depletion of Pol II on host mRNA promoters, we find that Pol II binding to tRNA loci increases. Finally, we report Pol III and associated factors bind the HSV genome, which suggests a previously unrecognized role in HSV-1 gene expression. These data provide insight into novel mechanisms by which HSV-1 alters the host nuclear environment, shifting key processes in favor of the pathogen.


2020 ◽  
Author(s):  
Xiuye Wang ◽  
Liang Liu ◽  
Adam W. Whisnant ◽  
Thomas Hennig ◽  
Lara Djakovic ◽  
...  

AbstractEukaryotic gene expression is extensively regulated by cellular stress and pathogen infections. We have previously shown that herpes simplex virus 1 (HSV-1) and several cellular stresses cause widespread disruption of transcription termination (DoTT) of RNA polymerase II (RNAPII) in host genes and that the viral immediate early factor ICP27 plays an important role in HSV-1-induced DoTT. Here, we show that HSV-1 infection also leads to widespread changes in alternative polyadenylation (APA) of host mRNAs. In the majority of cases, polyadenylation shifts to upstream poly(A) sites (PAS), including many intronic PAS. Mechanistically, ICP27 contributes to HSV-1-mediated APA regulation. HSV-1- and ICP27-induced activation of intronic PAS is sequence-dependent and does not involve general inhibition of U1 snRNP. HSV1-induced intronic polyadenylation is accompanied by early termination of RNAPII. Finally, HSV-1-induced mRNAs polyadenylated at intronic PAS are exported into the cytoplasm while APA isoforms with extended 3’ UTRs are sequestered in the nuclei, both preventing the expression of the full-length gene products. Together with other recent studies, our results suggest that viral infection and cellular stresses induce a multi-faceted host shutoff response that includes DoTT and changes in APA profiles.


2016 ◽  
Vol 90 (24) ◽  
pp. 11279-11279 ◽  
Author(s):  
Robert G. Abrisch ◽  
Tess M. Eidem ◽  
Petro Yakovchuk ◽  
Jennifer F. Kugel ◽  
James A. Goodrich

Author(s):  
Thomas Rivas ◽  
James A. Goodrich ◽  
Jennifer F. Kugel

Infection by herpes simplex virus 1 (HSV-1) impacts nearly all steps of host cell gene expression. The regulatory mechanisms by which this occurs, and the interplay between host and viral factors, have yet to be fully elucidated. We investigated how the occupancy of RNA polymerase II (Pol II) on the host genome changes during HSV-1 infection and is impacted by the viral immediate early protein ICP4. Pol II ChIP-seq experiments revealed ICP4-dependent decreases and increases in Pol II levels across the bodies of hundreds of genes. Our data suggest ICP4 represses host transcription by inhibiting recruitment of Pol II and activates host genes by promoting release of Pol II from promoter proximal pausing into productive elongation. Consistent with this, ICP4 was required for the decrease in levels of the pausing factor NELF-A on several HSV-1 activated genes after infection. In the absence of infection, exogenous expression of ICP4 activated, but did not repress, transcription of some genes in a chromatin-dependent context. Our data support the model that ICP4 decreases promoter proximal pausing on host genes activated by infection, and ICP4 is necessary, but not sufficient, to repress transcription of host genes during viral infection.


Sign in / Sign up

Export Citation Format

Share Document