scholarly journals Turnover of Variant Surface Glycoprotein in Trypanosoma brucei Is a Bimodal Process

mBio ◽  
2021 ◽  
Author(s):  
Paige Garrison ◽  
Umaer Khan ◽  
Michael Cipriano ◽  
Peter J. Bush ◽  
Jacquelyn McDonald ◽  
...  

African trypanosomes, the protozoan agent of human African trypanosomaisis, avoid the host immune system by switching expression of the variant surface glycoprotein (VSG). VSG is a long-lived protein that has long been thought to be turned over by hydrolysis of its glycolipid membrane anchor.

Open Biology ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 190182 ◽  
Author(s):  
Núria Sima ◽  
Emilia Jane McLaughlin ◽  
Sebastian Hutchinson ◽  
Lucy Glover

African trypanosomes escape the mammalian immune response by antigenic variation—the periodic exchange of one surface coat protein, in Trypanosoma brucei the variant surface glycoprotein (VSG), for an immunologically distinct one. VSG transcription is monoallelic, with only one VSG being expressed at a time from a specialized locus, known as an expression site. VSG switching is a predominantly recombination-driven process that allows VSG sequences to be recombined into the active expression site either replacing the currently active VSG or generating a ‘new’ VSG by segmental gene conversion. In this review, we describe what is known about the factors that influence this process, focusing specifically on DNA repair and recombination.


1988 ◽  
Vol 16 (3) ◽  
pp. 265-268 ◽  
Author(s):  
MICHAEL A. J. FERGUSON ◽  
STEVEN W. HOMANS ◽  
RAYMOND A. DWEK ◽  
THOMAS W. RADEMACHER

1986 ◽  
Vol 6 (8) ◽  
pp. 2950-2956 ◽  
Author(s):  
A Raibaud ◽  
G Buck ◽  
T Baltz ◽  
H Eisen

Variant surface glycoprotein (VSG) genes of African trypanosomes are expressed when they are inserted into one of several telomere-linked expression sites. We cloned and characterized an 11-kilobase (kb) DNA fragment located upstream of an expressed VSG gene. A DNA sequence of 1.8 kb that is located immediately upstream of the inserted VSG gene contains sequences homologous to the 76-base-pair repeats described as being upstream of VSG genes in Trypanosoma brucei (D. A. Campbell, M. P. Van Bree, and J. C. Boothroyd, Nucleic Acids Res. 12:2759-2774). There are no such sequences elsewhere in the 11-kb cloned region. Southern blot analysis using probes from the cloned region revealed multiple unlinked copies of the same or very similar regions. At least three of these are located near telomeres, and two have been shown to be used for the expression of known Trypanosoma equiperdum VSG genes. Like VSG genes, the upstream sequences themselves can be duplicated and deleted. The choice of expression site to be used by a duplicated VSG gene is nonrandom; the site used for expression of the parental VSG gene is strongly favored for use in the daughter variant. Furthermore, even when the parental expression site is not used, the VSG gene occupying it is replaced. Thus, an active expression site is a preferential target for gene conversion in the next variation event.


2015 ◽  
Vol 112 (21) ◽  
pp. E2803-E2812 ◽  
Author(s):  
Igor Cestari ◽  
Ken Stuart

African trypanosomes evade clearance by host antibodies by periodically changing their variant surface glycoprotein (VSG) coat. They transcribe only one VSG gene at a time from 1 of about 20 telomeric expression sites (ESs). They undergo antigenic variation by switching transcription between telomeric ESs or by recombination of the VSG gene expressed. We show that the inositol phosphate (IP) pathway controls transcription of telomeric ESs and VSG antigenic switching in Trypanosoma brucei. Conditional knockdown of phosphatidylinositol 5-kinase (TbPIP5K) or phosphatidylinositol 5-phosphatase (TbPIP5Pase) or overexpression of phospholipase C (TbPLC) derepresses numerous silent ESs in T. brucei bloodstream forms. The derepression is specific to telomeric ESs, and it coincides with an increase in the number of colocalizing telomeric and RNA polymerase I foci in the nucleus. Monoallelic VSG transcription resumes after reexpression of TbPIP5K; however, most of the resultant cells switched the VSG gene expressed. TbPIP5K, TbPLC, their substrates, and products localize to the plasma membrane, whereas TbPIP5Pase localizes to the nucleus proximal to telomeres. TbPIP5Pase associates with repressor/activator protein 1 (TbRAP1), and their telomeric silencing function is altered by TbPIP5K knockdown. These results show that specific steps in the IP pathway control ES transcription and antigenic switching in T. brucei by epigenetic regulation of telomere silencing.


1997 ◽  
Vol 324 (3) ◽  
pp. 885-895 ◽  
Author(s):  
Françoise PATURIAUX-HANOCQ ◽  
Nicole ZITZMANN ◽  
Jacqueline HANOCQ-QUERTIER ◽  
Luc VANHAMME ◽  
Sylvie ROLIN ◽  
...  

Procyclic forms of Trypanosoma brucei have been genetically modified to express the major metacyclic variant surface glycoprotein (VSG variant AnTat 11.17) of Trypanosoma gambiense. The VSG is expressed in an intact membrane-bound form that can be detected over the entire plasma membrane, together with procyclin, and as a series of lower-molecular-mass fragments that are mostly soluble degradation products. The presence of degraded VSG in the cells and the culture medium suggests that VSG is not efficiently processed and/or efficiently folded when expressed in procyclic cells. The level of procyclin expressed on the surface of these cells is slightly reduced, although there is no difference in procyclin mRNA levels. The intact membrane-bound form of the VSG is N-glycosylated with oligomannose structures and contains a glycosylphosphatidylinositol (GPI) membrane anchor that can be biosynthetically labelled with [3H]ethanolamine. The anchor is sensitive to mammalian GPI-specific phospholipase D but, like the anchor of procyclin, it is resistant to the action of bacterial phosphatidylinositol-specific phospholipase C. This pattern of phospholipase sensitivity suggests that the GPI anchor acquired by VSG when expressed in procyclics is acylated on the inositol ring and therefore resembles a procyclic procyclin-type anchor rather than a trypomastigote VSG-type anchor with respect to the lipid structure. The VSG expressed in procyclics was sensitive to the action of a mixture of sialidase, β-galactosidase and β-hexosaminidase, suggesting that the VSG GPI anchor also contains a sialylated polylactosamine side-chain modification similar to that described for procyclin. These results indicate that the nature of the protein expressed has little influence on the post-translational modifications performed in the secretory pathway of procyclic trypanosomes.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Emilia K. Kruzel ◽  
George P. Zimmett ◽  
James D. Bangs

ABSTRACT African trypanosomes are protozoan parasites that cause African sleeping sickness. Critical to the success of the parasite is the variant surface glycoprotein (VSG), which covers the parasite cell surface and which is essential for evasion of the host immune system. VSG is membrane bound by a glycolipid (GPI) anchor that is attached in the earliest compartment of the secretory pathway, the endoplasmic reticulum (ER). We have previously shown that the anchor acts as a positive forward trafficking signal for ER exit, implying a cognate receptor mechanism for GPI recognition and loading in coated cargo vesicles leaving the ER. Here, we characterize a family of small transmembrane proteins that act at adaptors for this process. This work adds to our understanding of general GPI function in eukaryotic cells and specifically in the synthesis and transport of the critical virulence factor of pathogenic African trypanosomes. The critical virulence factor of bloodstream-form Trypanosoma brucei is the glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG). Endoplasmic reticulum (ER) exit of VSG is GPI dependent and relies on a discrete subset of COPII machinery (TbSec23.2/TbSec24.1). In other systems, p24 transmembrane adaptor proteins selectively recruit GPI-anchored cargo into nascent COPII vesicles. Trypanosomes have eight putative p24s (TbERP1 to TbERP8) that are constitutively expressed at the mRNA level. However, only four TbERP proteins (TbERP1, -2, -3, and -8) are detectable in bloodstream-form parasites. All four colocalize to ER exit sites, are required for efficient GPI-dependent ER exit, and are interdependent for steady-state stability. These results suggest shared function as an oligomeric ER GPI-cargo receptor. This cohort also mediates rapid forward trafficking of the soluble lysosomal hydrolase TbCatL. Procyclic insect-stage trypanosomes have a distinct surface protein, procyclin, bearing a different GPI anchor structure. A separate cohort of TbERP proteins (TbERP1, -2, -4, and -8) are expressed in procyclic parasites and also function in GPI-dependent ER exit. Collectively, these results suggest developmentally regulated TbERP cohorts, likely in obligate assemblies, that may recognize stage-specific GPI anchors to facilitate GPI-cargo trafficking throughout the parasite life cycle. IMPORTANCE African trypanosomes are protozoan parasites that cause African sleeping sickness. Critical to the success of the parasite is the variant surface glycoprotein (VSG), which covers the parasite cell surface and which is essential for evasion of the host immune system. VSG is membrane bound by a glycolipid (GPI) anchor that is attached in the earliest compartment of the secretory pathway, the endoplasmic reticulum (ER). We have previously shown that the anchor acts as a positive forward trafficking signal for ER exit, implying a cognate receptor mechanism for GPI recognition and loading in coated cargo vesicles leaving the ER. Here, we characterize a family of small transmembrane proteins that act at adaptors for this process. This work adds to our understanding of general GPI function in eukaryotic cells and specifically in the synthesis and transport of the critical virulence factor of pathogenic African trypanosomes.


2019 ◽  
Vol 116 (41) ◽  
pp. 20725-20735 ◽  
Author(s):  
Francisco Aresta-Branco ◽  
Margarida Sanches-Vaz ◽  
Fabio Bento ◽  
João A. Rodrigues ◽  
Luisa M. Figueiredo

Trypanosoma brucei parasites successfully evade the host immune system by periodically switching the dense coat of variant surface glycoprotein (VSG) at the cell surface. Each parasite expresses VSGs in a monoallelic fashion that is tightly regulated. The consequences of exposing multiple VSGs during an infection, in terms of antibody response and disease severity, remain unknown. In this study, we overexpressed a high-mobility group box protein, TDP1, which was sufficient to open the chromatin of silent VSG expression sites, to disrupt VSG monoallelic expression, and to generate viable and healthy parasites with a mixed VSG coat. Mice infected with these parasites mounted a multi-VSG antibody response, which rapidly reduced parasitemia. Consequently, we observed prolonged survival in which nearly 90% of the mice survived a 30-d period of infection with undetectable parasitemia. Immunodeficient RAG2 knock-out mice were unable to control infection with TDP1-overexpressing parasites, showing that the adaptive immune response is critical to reducing disease severity. This study shows that simultaneous exposure of multiple VSGs is highly detrimental to the parasite, even at the very early stages of infection, suggesting that drugs that disrupt VSG monoallelic expression could be used to treat trypanosomiasis.


Sign in / Sign up

Export Citation Format

Share Document