scholarly journals African trypanosomes expressing multiple VSGs are rapidly eliminated by the host immune system

2019 ◽  
Vol 116 (41) ◽  
pp. 20725-20735 ◽  
Author(s):  
Francisco Aresta-Branco ◽  
Margarida Sanches-Vaz ◽  
Fabio Bento ◽  
João A. Rodrigues ◽  
Luisa M. Figueiredo

Trypanosoma brucei parasites successfully evade the host immune system by periodically switching the dense coat of variant surface glycoprotein (VSG) at the cell surface. Each parasite expresses VSGs in a monoallelic fashion that is tightly regulated. The consequences of exposing multiple VSGs during an infection, in terms of antibody response and disease severity, remain unknown. In this study, we overexpressed a high-mobility group box protein, TDP1, which was sufficient to open the chromatin of silent VSG expression sites, to disrupt VSG monoallelic expression, and to generate viable and healthy parasites with a mixed VSG coat. Mice infected with these parasites mounted a multi-VSG antibody response, which rapidly reduced parasitemia. Consequently, we observed prolonged survival in which nearly 90% of the mice survived a 30-d period of infection with undetectable parasitemia. Immunodeficient RAG2 knock-out mice were unable to control infection with TDP1-overexpressing parasites, showing that the adaptive immune response is critical to reducing disease severity. This study shows that simultaneous exposure of multiple VSGs is highly detrimental to the parasite, even at the very early stages of infection, suggesting that drugs that disrupt VSG monoallelic expression could be used to treat trypanosomiasis.

mBio ◽  
2021 ◽  
Author(s):  
Paige Garrison ◽  
Umaer Khan ◽  
Michael Cipriano ◽  
Peter J. Bush ◽  
Jacquelyn McDonald ◽  
...  

African trypanosomes, the protozoan agent of human African trypanosomaisis, avoid the host immune system by switching expression of the variant surface glycoprotein (VSG). VSG is a long-lived protein that has long been thought to be turned over by hydrolysis of its glycolipid membrane anchor.


2018 ◽  
Vol 39 (3) ◽  
Author(s):  
Igor Cestari ◽  
Hilary McLeland-Wieser ◽  
Kenneth Stuart

ABSTRACT Allelic exclusion of variant surface glycoprotein (VSG) genes is essential for African trypanosomes to evade the host antibody response by antigenic variation. The mechanisms by which this parasite expresses only one of its ∼2,000 VSG genes at a time are unknown. We show that nuclear phosphatidylinositol 5-phosphatase (PIP5Pase) interacts with repressor activator protein 1 (RAP1) in a multiprotein complex and functions in the control of VSG allelic exclusion. RAP1 binds PIP5Pase substrate phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], and catalytic mutation of PIP5Pase that inhibits PI(3,4,5)P3 dephosphorylation results in simultaneous transcription of VSGs from all telomeric expression sites (ESs) and from silent subtelomeric VSG arrays. PIP5Pase and RAP1 bind to telomeric ESs, especially at 70-bp repeats and telomeres, and their binding is altered by PIP5Pase inactivation or knockdown, implying changes in ES chromatin organization. Our data suggest a model whereby PIP5Pase controls PI(3,4,5)P3 binding by RAP1 and, thus, RAP1 silencing of telomeric and subtelomeric VSG genes. Hence, allelic exclusion of VSG genes may entail control of nuclear phosphoinositides.


Dental Update ◽  
2021 ◽  
Vol 48 (1) ◽  
pp. 76-81
Author(s):  
Lakshman Samaranayake ◽  
Kausar Sadia Fakhruddin

Transplant pioneer, Peter Medawar, once said that a virus is ‘simply a piece of bad news wrapped in protein’. One could opine then, that the new COVID-19 vaccines are ‘Bits of corona viral proteins in gift wrapping.’ For, most of the COVID-19 vaccines are based on the principle that pre-exposure of the vaccinee's host immune system to the spike proteins of SARS-CoV-2, the first part of the viral anatomy that touches the vulnerable host cells, will elicit an effective antibody response to curb potential future infections. COVID-19 vaccines come in many sizes and shapes, and clearly, a return to normal, post-COVID dental practice entails protecting all members of the dental team with an appropriate vaccine, as and when available. We provide a thumbnail sketch of the COVID-19 vaccines currently in the offing, which we hope will be helpful for decision-making for choice of vaccine. The commentary ends with a discussion of the impact of COVID-19 vaccines on dentistry, in general.


2012 ◽  
Vol 78 (21) ◽  
pp. 7760-7768 ◽  
Author(s):  
Michele A. Maltz ◽  
Brian L. Weiss ◽  
Michelle O'Neill ◽  
Yineng Wu ◽  
Serap Aksoy

ABSTRACTMany bacteria successfully colonize animals by forming protective biofilms. Molecular processes that underlie the formation and function of biofilms in pathogenic bacteria are well characterized. In contrast, the relationship between biofilms and host colonization by symbiotic bacteria is less well understood. Tsetse flies (Glossinaspp.) house 3 maternally transmitted symbionts, one of which is a commensal (Sodalis glossinidius) found in several host tissues, including the gut. We determined thatSodalisforms biofilms in the tsetse gut and that this process is influenced by theSodalisouter membrane protein A (OmpA). MutantSodalisstrains that do not produce OmpA (SodalisΔOmpA mutants) fail to form biofilmsin vitroand are unable to colonize the tsetse gut unless endogenous symbiotic bacteria are present. Our data indicate that in the absence of biofilms,SodalisΔOmpA mutant cells are exposed to and eliminated by tsetse's innate immune system, suggesting that biofilms helpSodalisevade the host immune system. Tsetse is the sole vector of pathogenic African trypanosomes, which also reside in the fly gut. Acquiring a better understanding of the dynamics that promoteSodaliscolonization of the tsetse gut may enhance the development of novel disease control strategies.


Author(s):  
Wanyin Tao ◽  
Shu Zhu ◽  
Guorong Zhang ◽  
Xiaofang Wang ◽  
Meng Guo ◽  
...  

The current global COVID-19 pandemic is caused by beta coronavirus Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which already infected over 10 million and caused 500 thousand deaths by June 2020. Overproduction of cytokines triggered by COVID-19 infection, known as "cytokine storm", is a highly risk factor associated with disease severity. However, how COVID-19 infection induce cytokine storm is still largely unknown. Accumulating in vitro and in vivo evidence suggests that gut is also susceptible to COVID19 infection: Human intestinal organoids, an in vitro model which mimic the specific cell type and spatial structure of the intestine, were susceptible to SARS-CoV2 infection; A significant fraction of patients reported gut symptoms; Viral RNA may persist for more than 30 days and infectious virus could be isolated in fecal samples. The gastrointestinal tract is the primary site of interaction between the host immune system with symbiotic and pathogenic microorganisms. The bacteria resident in our gastrointestinal tract, known as gut microbiota, is important to maintain the homeostasis of our immune system. While imbalance of gut microbiota, or dysbiosis, is associated with multiple inflammation diseases5. It's possible that SARS-CoV-2 infection may lead to alternation of gut microbiota thus worsen the host symptom. IL-18 is a proinflammatory cytokine produced multiple enteric cells, including intestinal epithelial cells (IECs), immune cells as well as enteric nervous system, and was shown to increase in the serum of COVID-19 patients. Immunoglobin A (IgA) is mainly produced in the mucosal surfaces, in humans 40-60mg kg-1 day-1 than all other immunoglobulin isotypes combined, and at least 80% of all plasma cells are located in the intestinal lamina propria. Recent study showed that SARS-CoV-2 specific IgA in the serum is positively correlate with the disease severity in COVID-19 patients11. Here we investigated the alterations of microbiota in COVID-19 patients, and its correlation with inflammatory factor IL-18 and SARS-CoV2 specific IgA.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Emilia K. Kruzel ◽  
George P. Zimmett ◽  
James D. Bangs

ABSTRACT African trypanosomes are protozoan parasites that cause African sleeping sickness. Critical to the success of the parasite is the variant surface glycoprotein (VSG), which covers the parasite cell surface and which is essential for evasion of the host immune system. VSG is membrane bound by a glycolipid (GPI) anchor that is attached in the earliest compartment of the secretory pathway, the endoplasmic reticulum (ER). We have previously shown that the anchor acts as a positive forward trafficking signal for ER exit, implying a cognate receptor mechanism for GPI recognition and loading in coated cargo vesicles leaving the ER. Here, we characterize a family of small transmembrane proteins that act at adaptors for this process. This work adds to our understanding of general GPI function in eukaryotic cells and specifically in the synthesis and transport of the critical virulence factor of pathogenic African trypanosomes. The critical virulence factor of bloodstream-form Trypanosoma brucei is the glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG). Endoplasmic reticulum (ER) exit of VSG is GPI dependent and relies on a discrete subset of COPII machinery (TbSec23.2/TbSec24.1). In other systems, p24 transmembrane adaptor proteins selectively recruit GPI-anchored cargo into nascent COPII vesicles. Trypanosomes have eight putative p24s (TbERP1 to TbERP8) that are constitutively expressed at the mRNA level. However, only four TbERP proteins (TbERP1, -2, -3, and -8) are detectable in bloodstream-form parasites. All four colocalize to ER exit sites, are required for efficient GPI-dependent ER exit, and are interdependent for steady-state stability. These results suggest shared function as an oligomeric ER GPI-cargo receptor. This cohort also mediates rapid forward trafficking of the soluble lysosomal hydrolase TbCatL. Procyclic insect-stage trypanosomes have a distinct surface protein, procyclin, bearing a different GPI anchor structure. A separate cohort of TbERP proteins (TbERP1, -2, -4, and -8) are expressed in procyclic parasites and also function in GPI-dependent ER exit. Collectively, these results suggest developmentally regulated TbERP cohorts, likely in obligate assemblies, that may recognize stage-specific GPI anchors to facilitate GPI-cargo trafficking throughout the parasite life cycle. IMPORTANCE African trypanosomes are protozoan parasites that cause African sleeping sickness. Critical to the success of the parasite is the variant surface glycoprotein (VSG), which covers the parasite cell surface and which is essential for evasion of the host immune system. VSG is membrane bound by a glycolipid (GPI) anchor that is attached in the earliest compartment of the secretory pathway, the endoplasmic reticulum (ER). We have previously shown that the anchor acts as a positive forward trafficking signal for ER exit, implying a cognate receptor mechanism for GPI recognition and loading in coated cargo vesicles leaving the ER. Here, we characterize a family of small transmembrane proteins that act at adaptors for this process. This work adds to our understanding of general GPI function in eukaryotic cells and specifically in the synthesis and transport of the critical virulence factor of pathogenic African trypanosomes.


2021 ◽  
Author(s):  
Seanantha S. Baros-Steyl ◽  
Kehilwe C. Nakedi ◽  
Tariq A. Ganief ◽  
Javan O. Okendo ◽  
David L. Tabb ◽  
...  

AbstractPathogenic mycobacteria, such as Mycobacterium tuberculosis, modulate the host immune system to evade clearance and promote long-term persistence, resulting in disease progression or latent infection. Understanding the mechanisms pathogenic mycobacteria use to escape elimination by the host immune system is critical to better understanding the molecular mechanisms of mycobacterial infection. Protein kinase G (PknG) in pathogenic mycobacteria has been shown to play an important role in avoiding clearance by macrophages through blocking phagosome-lysosome fusion; however, the exact mechanism is not completely understood. Here, to further investigate the role of mycobacterial PknG during early events of macrophage infection, RAW 264.7 macrophage cell lines were infected with M. bovis BCG wild-type and PknG knock-out mutant strains. After proteolysis, phosphopeptides were enriched via TiO2 columns and subjected to LC-MS/MS to identify differentially phosphorylated peptides between the wild-type and PknG mutant infected macrophages. A total of 1401 phosphosites on 914 unique proteins were identified. Following phosphoproteome normalisation and differential expression analysis, a total of 149 phosphosites were differentially phosphorylated in the wild-type infected RAW 264.7 macrophages versus the PknG knock-out mutant. A subset of 95 phosphosites was differentially up-regulated in the presence of PknG. Functional analysis of our data revealed that PknG kinase activity reprograms normal macrophage function through interfering with host cytoskeletal organisation, spliceosomal machinery, translational initiation, and programmed cell death. Differentially phosphorylated proteins in this study serve as a foundation for further validation and PknG host substrate assignment.ImportanceTuberculosis (TB) remains one of the leading causes of death from infection worldwide, due to the ability of Mycobacterium tuberculosis (Mtb) to survive and replicate within the host, establishing reservoirs of live bacteria that promote persistence and recurrence of disease. Understanding the mechanisms that Mtb uses to evade the host immune system is thus a major goal in the TB field. Protein kinase G is thought to play an important role in Mtb avoiding clearance by the host through disruption of macrophage function, but the underlying molecular mechanisms of this are not well understood. Here, our new phosphoproteomic data reveals that mycobacterial PknG substantially reprograms normal macrophage function through extensive PknG-mediated post-translational control of critical host cellular processes. These novel findings therefore considerably increase our knowledge of mycobacterial pathogenicity, including specific host cellular pathways that might be re-activatable through host-directed therapy, thereby restoring macrophage ability to eliminate Mtb.


2009 ◽  
Vol 9 (1) ◽  
pp. 148-154 ◽  
Author(s):  
Luisa M. Figueiredo ◽  
George A. M. Cross

ABSTRACT In most eukaryotes, RNA polymerase I (Pol I) exclusively transcribes long arrays of identical rRNA genes (ribosomal DNA [rDNA]). African trypanosomes have the unique property of using Pol I to also transcribe the variant surface glycoprotein VSG genes. VSGs are important virulence factors because their switching allows trypanosomes to escape the host immune system, a mechanism known as antigenic variation. Only one VSG is transcribed at a time from one of 15 bloodstream-form expression sites (BESs). Although it is clear that switching among BESs does not involve DNA rearrangements and that regulation is probably epigenetic, it remains unknown why BESs are transcribed by Pol I and what roles are played by chromatin structure and histone modifications. Using chromatin immunoprecipitation, micrococcal nuclease digestion, and chromatin fractionation, we observed that there are fewer nucleosomes at the active BES and that these are irregularly spaced compared to silent BESs. rDNA coding regions are also depleted of nucleosomes, relative to the rDNA spacer. In contrast, genes transcribed by Pol II are organized in a more compact, regularly spaced, nucleosomal structure. These observations provide new insight on antigenic variation by showing that chromatin remodeling is an intrinsic feature of BES regulation.


2021 ◽  
Vol 22 (16) ◽  
pp. 9039
Author(s):  
Giuseppe Murdaca ◽  
Alessandro Allegra ◽  
Francesca Paladin ◽  
Fabrizio Calapai ◽  
Caterina Musolino ◽  
...  

Objective: Multiple Myeloma (MM) is a haematological disease resulting from the neoplastic transformation of plasma cells. The uncontrolled growth of plasma cells in the bone marrow and the delivery of several cytokines causes bone erosion that often does not regress, even in the event of disease remission. MM is characterised by a multi-step evolutionary path, which starts with an early asymptomatic stage defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease. Data Sources and Study Selection: We have selected scientific publications on the specific topics “alarmis, MGUS, and MM”, drawing from PubMed. The keywords we used were alarmines, MGUS, MM, and immune system. Results: The analysis confirms the pivotal role of molecules such as high-mobility group box-1, heat shock proteins, and S100 proteins in the induction of neoangiogenesis, which represents a milestone in the negative evolution of MM as well as other haematological and non-haematological tumours. Conclusions: Modulation of the host immune system and the inhibition of neoangiogenesis may represent the therapeutic target for the treatment of MM that is capable of promoting better survival and reducing the risk of RRMM.


2020 ◽  
Vol 6 (2) ◽  
pp. 26-29
Author(s):  
Adam G. Marsh ◽  
G. Mark Anderson ◽  
Erich J. Izdepski

Sign in / Sign up

Export Citation Format

Share Document