scholarly journals The Mus musculus Papillomavirus Type 1 E7 Protein Binds to the Retinoblastoma Tumor Suppressor: Implications for Viral Pathogenesis

mBio ◽  
2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Tao Wei ◽  
Miranda Grace ◽  
Aayushi Uberoi ◽  
James C. Romero-Masters ◽  
Denis Lee ◽  
...  

Papillomavirus infections cause a variety of epithelial hyperplastic lesions, or warts. While most warts are benign, some papillomaviruses cause lesions that can progress to squamous cell carcinomas, and approximately 5% of all human cancers are caused by human papillomavirus (HPV) infections.

2021 ◽  
Author(s):  
Tao Wei ◽  
Miranda Grace ◽  
Aayushi Uberoi ◽  
James C Romero-Masters ◽  
Denis Lee ◽  
...  

The species specificity of papillomaviruses has been a significant roadblock for performing in vivo pathogenesis studies in common model organisms. The Mus musculus papillomavirus type 1 (MmuPV1) causes cutaneous papillomas that can progress to squamous cell carcinomas in laboratory mice. The papillomavirus E6 and E7 genes encode proteins that establish and maintain a cellular milieu that allows for viral genome synthesis and viral progeny synthesis in growth-arrested, terminally differentiated keratinocytes. The E6 and E7 proteins provide this activity by binding to and functionally reprogramming key cellular regulatory proteins. The MmuPV1 E7 protein lacks the canonical LXCXE motif that mediates the binding of multiple viral oncoproteins to the cellular retinoblastoma tumor suppressor protein, RB1. Our proteomic experiments, however, revealed that MmuPV1 E7 still interacts specifically with RB1. We show that MmuPV1 E7 interacts through its C-terminus with the C-terminal domain of RB1. Binding of MmuPV1 E7 to RB1 did not cause significant activation of E2F-regulated cellular genes. MmuPV1 E7 expression was shown to be essential for papilloma formation. Experimental infection of mice with MmuPV1 virus expressing an E7 mutant that is defective for binding to RB1 caused delayed onset, lower incidence, and smaller sizes of papillomas. Our results demonstrate that the MmuPV1 E7 gene is essential and that targeting non-canonical activities of RB1, which are independent of RB1's ability to modulate the expression of E2F-regulated genes, contribute to papillomavirus-mediated pathogenesis.


2001 ◽  
Vol 75 (16) ◽  
pp. 7583-7591 ◽  
Author(s):  
Sonia L. Gonzalez ◽  
Matt Stremlau ◽  
Xi He ◽  
John R. Basile ◽  
Karl Münger

ABSTRACT The steady-state level and metabolic half-life of retinoblastoma tumor suppressor protein pRB are decreased in cells that express high-risk human papillomavirus (HPV) E7 proteins. Here we show that pRB degradation is a direct activity of E7 and does not reflect a property of cell lines acquired during the selection process for E7 expression. An amino-terminal domain of E7 that does not directly contribute to pRB binding but is required for transformation is also necessary for E7-mediated pRB degradation. Treatment with inhibitors of the 26S proteasome not only blocks E7-mediated pRB degradation but also causes the stabilization of E7. Mutagenic analyses, however, reveal that the processes of proteasomal degradation of E7 and pRB are not linked processes. HPV type 16 E7 also targets the pRB-related proteins p107 and p130 for destabilization by a proteasome-dependent mechanism. Using the SAOS2 flat-cell assay as a biological indicator for pRB function, we demonstrate that pRB degradation, not solely binding, is important for the E7-induced inactivation of pRB.


2012 ◽  
Vol 86 (24) ◽  
pp. 13313-13323 ◽  
Author(s):  
B. Todorovic ◽  
K. Hung ◽  
P. Massimi ◽  
N. Avvakumov ◽  
F. A. Dick ◽  
...  

2002 ◽  
Vol 76 (20) ◽  
pp. 10559-10568 ◽  
Author(s):  
Anna-Marija Helt ◽  
Jens Oliver Funk ◽  
Denise A. Galloway

ABSTRACT The human papillomavirus (HPV) type 16 E7 oncoprotein must inactivate the retinoblastoma tumor suppressor (Rb) pathway to bypass G1 arrest. However, E7 C-terminal mutants that were able to inactivate Rb were unable to bypass DNA damage-induced G1 arrest and keratinocyte senescence, suggesting that the E7 C terminus may target additional G1 regulators. The E7 C-terminal mutant proteins E7 CVQ68-70AAA and E7 Δ79-83 (deletion of positions 79 through 83) were further tested in several models of cell cycle arrest associated with elevated levels of p21. C-terminal mutations rendered E7 unable to induce S phase and endoreduplication in differentiated keratinocytes and rendered it less efficient in delaying senescence of human mammary epithelial cells. Interestingly, when cell cycle arrest was induced with a peptide form of p21, the E7 C-terminal mutants were deficient in overcoming arrest, whereas a mutant defective in Rb binding was competent in inhibiting G1 arrest. These results suggest that the inactivation of both p21 and Rb by E7 contributes to subversion of cell cycle control in normal human epithelia but that neither p21 nor Rb inactivation alone is sufficient.


2017 ◽  
Vol 38 (12) ◽  
pp. 1188-1195 ◽  
Author(s):  
Nada J Farsi ◽  
Marie-Claude Rousseau ◽  
Nicolas Schlecht ◽  
Geneviève Castonguay ◽  
Paul Allison ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document