scholarly journals The role of Human papillomavirus in surface epithelial ovarian carcinoma with its effect on P53 and Retinoblastoma tumor suppressor genes

2014 ◽  
Vol 13 (4) ◽  
pp. 84-90
Author(s):  
Sana'a M. H. Alizi ◽  
◽  
Faiza A. Mukhlis ◽  
Ban A. Abdul-Majeed
2016 ◽  
Vol 20 (1) ◽  
pp. 106 ◽  
Author(s):  
Vardendra Manvikar ◽  
Rama Kulkarni ◽  
Anila Koneru ◽  
M Vanishree

Neurology ◽  
1998 ◽  
Vol 51 (5) ◽  
pp. 1250-1255 ◽  
Author(s):  
J. Fueyo ◽  
C. Gomez-Manzano ◽  
W. K. Alfred Yung ◽  
A. P. Kyritsis

2001 ◽  
Vol 75 (16) ◽  
pp. 7583-7591 ◽  
Author(s):  
Sonia L. Gonzalez ◽  
Matt Stremlau ◽  
Xi He ◽  
John R. Basile ◽  
Karl Münger

ABSTRACT The steady-state level and metabolic half-life of retinoblastoma tumor suppressor protein pRB are decreased in cells that express high-risk human papillomavirus (HPV) E7 proteins. Here we show that pRB degradation is a direct activity of E7 and does not reflect a property of cell lines acquired during the selection process for E7 expression. An amino-terminal domain of E7 that does not directly contribute to pRB binding but is required for transformation is also necessary for E7-mediated pRB degradation. Treatment with inhibitors of the 26S proteasome not only blocks E7-mediated pRB degradation but also causes the stabilization of E7. Mutagenic analyses, however, reveal that the processes of proteasomal degradation of E7 and pRB are not linked processes. HPV type 16 E7 also targets the pRB-related proteins p107 and p130 for destabilization by a proteasome-dependent mechanism. Using the SAOS2 flat-cell assay as a biological indicator for pRB function, we demonstrate that pRB degradation, not solely binding, is important for the E7-induced inactivation of pRB.


2013 ◽  
Vol 03 (04) ◽  
pp. 285-293 ◽  
Author(s):  
Gan Wang ◽  
Le Wang ◽  
Vanitha Bhoopalan ◽  
Yue Xi ◽  
Deepak K. Bhalla ◽  
...  

2000 ◽  
Vol 74 (20) ◽  
pp. 9479-9487 ◽  
Author(s):  
Justin Mostecki ◽  
Anne Halgren ◽  
Arash Radfar ◽  
Zohar Sachs ◽  
James Ravitz ◽  
...  

ABSTRACT In many tumor systems, analysis of cells for loss of heterozygosity (LOH) has helped to clarify the role of tumor suppressor genes in oncogenesis. Two important tumor suppressor genes, p53 and the Ink4a/Arf locus, play central roles in the multistep process of Abelson murine leukemia virus (Ab-MLV) transformation. p53 and the p53 regulatory protein, p19Arf, are required for the apoptotic crisis that characterizes the progression of primary transformed pre-B cells to fully malignant cell lines. To search for other tumor suppressor genes which may be involved in the Ab-MLV transformation process, we used endogenous proviral markers and simple-sequence length polymorphism analysis to screen Abelson virus-transformed pre-B cells for evidence of LOH. Our survey reinforces the role of the p53-p19 regulatory pathway in transformation; 6 of 58 cell lines tested had lost sequences on mouse chromosome 4, including theInk4a/Arf locus. Consistent with this pattern, a high frequency of primary pre-B-cell transformants derived fromInk4a/Arf +/− mice became established cell lines. In addition, half of them retained the single copy of the locus when the transformation process was complete. These data demonstrate that a single copy of the Ink4a/Arf locus is not sufficient to fully mediate the effects of these genes on transformation.


2006 ◽  
Vol 6 (7) ◽  
pp. 749-757
Author(s):  
Erik S. Knudsen ◽  
Charlene R. Sexton ◽  
Christopher N. Mayhew

Sign in / Sign up

Export Citation Format

Share Document