scholarly journals In Vivo Study of the Nucleosome Assembly Functions of ASF1 Histone Chaperones in Human Cells

2008 ◽  
Vol 28 (11) ◽  
pp. 3672-3685 ◽  
Author(s):  
Angélique Galvani ◽  
Régis Courbeyrette ◽  
Morgane Agez ◽  
Françoise Ochsenbein ◽  
Carl Mann ◽  
...  

ABSTRACT Histone chaperones have been implicated in nucleosome assembly and disassembly as well as histone modification. ASF1 is a highly conserved histone H3/H4 chaperone that synergizes in vitro with two other histone chaperones, chromatin assembly factor 1 (CAF-1) and histone repression A factor (HIRA), in DNA synthesis-coupled and DNA synthesis-independent nucleosome assembly. Here, we identify mutants of histones H3.1 and H3.3 that are unable to interact with human ASF1A and ASF1B isoforms but that are still competent to bind CAF-1 and HIRA, respectively. We show that these mutant histones are inefficiently deposited into chromatin in vivo. Furthermore, we found that both ASF1A and ASF1B participate in the DNA synthesis-independent deposition of H3.3 in HeLa cells, thus highlighting an unexpected role for ASF1B in this pathway. This pathway does not require interaction of ASF1 with HIRA. We provide the first direct determination that ASF1A and ASF1B play a role in the efficiency of nucleosome assembly in vivo in human cells.

1998 ◽  
Vol 143 (3) ◽  
pp. 563-575 ◽  
Author(s):  
Emmanuelle Martini ◽  
Danièle M.J. Roche ◽  
Kathrin Marheineke ◽  
Alain Verreault ◽  
Geneviève Almouzni

The subcellular distribution and posttranslational modification of human chromatin assembly factor 1 (CAF-1) have been investigated after UV irradiation of HeLa cells. In an asynchronous cell population only a subfraction of the two large CAF-1 subunits, p150 and p60, were found to exist in a chromatin-associated fraction. This fraction is most abundant during S phase in nonirradiated cells and is much reduced in G2 cells. After UV irradiation, the chromatin-associated form of CAF-1 dramatically increased in all cells irrespective of their position in the cell cycle. Such chromatin recruitment resembles that seen for PCNA, a DNA replication and repair factor. The chromatin-associated fraction of p60 was predominantly hypophosphorylated in nonirradiated G2 cells. UV irradiation resulted in the rapid recruitment to chromatin of phosphorylated forms of the p60 subunit. Furthermore, the amount of the p60 and p150 subunits of CAF-1 associated with chromatin was a function of the dose of UV irradiation. Consistent with these in vivo observations, we found that the amount of CAF-1 required to stimulate nucleosome assembly during the repair of UV photoproducts in vitro depended upon both the number of lesions and the phosphorylation state of CAF-1. The recruitment of CAF-1 to chromatin in response to UV irradiation of human cells described here supports a physiological role for CAF-1 in linking chromatin assembly to DNA repair.


2007 ◽  
Vol 18 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Yasunari Takami ◽  
Tatsuya Ono ◽  
Tatsuo Fukagawa ◽  
Kei-ichi Shibahara ◽  
Tatsuo Nakayama

Chromatin assembly factor-1 (CAF-1), a complex consisting of p150, p60, and p48 subunits, is highly conserved from yeast to humans and facilitates nucleosome assembly of newly replicated DNA in vitro. To investigate roles of CAF-1 in vertebrates, we generated two conditional DT40 mutants, respectively, devoid of CAF-1p150 and p60. Depletion of each of these CAF-1 subunits led to delayed S-phase progression concomitant with slow DNA synthesis, followed by accumulation in late S/G2 phase and aberrant mitosis associated with extra centrosomes, and then the final consequence was cell death. We demonstrated that CAF-1 is necessary for rapid nucleosome formation during DNA replication in vivo as well as in vitro. Loss of CAF-1 was not associated with the apparent induction of phosphorylations of S-checkpoint kinases Chk1 and Chk2. To elucidate the precise role of domain(s) in CAF-1p150, functional dissection analyses including rescue assays were preformed. Results showed that the binding abilities of CAF-1p150 with CAF-1p60 and DNA polymerase sliding clamp proliferating cell nuclear antigen (PCNA) but not with heterochromatin protein HP1-γ are required for cell viability. These observations highlighted the essential role of CAF-1–dependent nucleosome assembly in DNA replication and cell proliferation through its interaction with PCNA.


2001 ◽  
Vol 21 (19) ◽  
pp. 6574-6584 ◽  
Author(s):  
Jessica K. Tyler ◽  
Kimberly A. Collins ◽  
Jayashree Prasad-Sinha ◽  
Elizabeth Amiott ◽  
Michael Bulger ◽  
...  

ABSTRACT The assembly of newly synthesized DNA into chromatin is essential for normal growth, development, and differentiation. To gain a better understanding of the assembly of chromatin during DNA synthesis, we identified, cloned, and characterized the 180- and 105-kDa polypeptides of Drosophila chromatin assembly factor 1 (dCAF-1). The purified recombinant p180+p105+p55 dCAF-1 complex is active for DNA replication-coupled chromatin assembly. Furthermore, we have established that the putative 75-kDa polypeptide of dCAF-1 is a C-terminally truncated form of p105 that does not coexist in dCAF-1 complexes containing the p105 subunit. The analysis of native and recombinant dCAF-1 revealed an interaction between dCAF-1 and theDrosophila anti-silencing function 1 (dASF1) component of replication-coupling assembly factor (RCAF). The binding of dASF1 to dCAF-1 is mediated through the p105 subunit of dCAF-1. Consistent with the interaction between dCAF-1 p105 and dASF1 in vitro, we observed that dASF1 and dCAF-1 p105 colocalized in vivo inDrosophila polytene chromosomes. This interaction between dCAF-1 and dASF1 may be a key component of the functional synergy observed between RCAF and dCAF-1 during the assembly of newly synthesized DNA into chromatin.


2013 ◽  
Vol 12 (5) ◽  
pp. 654-664 ◽  
Author(s):  
Ernest Radovani ◽  
Matthew Cadorin ◽  
Tahireh Shams ◽  
Suzan El-Rass ◽  
Abdel R. Karsou ◽  
...  

ABSTRACT Rtt109 is a fungal histone acetyltransferase (HAT) that catalyzes histone H3 acetylation functionally associated with chromatin assembly. Rtt109-mediated H3 acetylation involves two histone chaperones, Asf1 and Vps75. In vivo , Rtt109 requires both chaperones for histone H3 lysine 9 acetylation (H3K9ac) but only Asf1 for full H3K56ac. In vitro , Rtt109-Vps75 catalyzes both H3K9ac and H3K56ac, whereas Rtt109-Asf1 catalyzes only H3K56ac. In this study, we extend the in vitro chaperone-associated substrate specificity of Rtt109 by showing that it acetylates vertebrate linker histone in the presence of Vps75 but not Asf1. In addition, we demonstrate that in Saccharomyces cerevisiae a short basic sequence at the carboxyl terminus of Rtt109 (Rtt109C) is required for H3K9ac in vivo . Furthermore, through in vitro and in vivo studies, we demonstrate that Rtt109C is required for optimal H3K56ac by the HAT in the presence of full-length Asf1. When Rtt109C is absent, Vps75 becomes important for H3K56ac by Rtt109 in vivo . In addition, we show that lysine 290 (K290) in Rtt109 is required in vivo for Vps75 to enhance the activity of the HAT. This is the first in vivo evidence for a role for Vps75 in H3K56ac. Taken together, our results contribute to a better understanding of chaperone control of Rtt109-mediated H3 acetylation.


2004 ◽  
Vol 24 (7) ◽  
pp. 2853-2862 ◽  
Author(s):  
Arman Nabatiyan ◽  
Torsten Krude

ABSTRACT In eukaryotic cells, chromatin serves as the physiological template for gene transcription, DNA replication, and repair. Chromatin assembly factor 1 (CAF-1) is the prime candidate protein to mediate assembly of newly replicated DNA into chromatin. To investigate the physiological role of CAF-1 in vivo, we used RNA interference (RNAi) to silence the 60-kDa subunit of CAF-1 (p60) in human cells. Transfection of a small interfering RNA (siRNA) directed against p60 resulted in efficient silencing of p60 expression within 24 h. This silencing led to an induction of programmed cell death in proliferating but not in quiescent human cells. Concomitantly, proliferating cells lacking p60 accumulated DNA double-strand breaks and increased levels of the phosphorylated histone H2A.X. Nuclear extracts from cells lacking p60 exhibited a 10-fold reduction of nucleosome assembly activity during DNA synthesis, which was restored upon addition of recombinant p60 protein. Nascent chromatin in cell nuclei lacking p60 showed significantly increased nuclease sensitivity, indicating chromatin assembly defects during DNA synthesis in vivo. Collectively, these data identify CAF-1 as an essential factor not only for S-phase-specific chromatin assembly but also for proliferating cell viability.


2004 ◽  
Vol 279 (50) ◽  
pp. 52069-52074 ◽  
Author(s):  
Melissa W. Adkins ◽  
Jessica K. Tyler

The packaging of the eukaryotic genome into chromatin is likely to be mediated by chromatin assembly factors, including histone chaperones. We investigated the function of the histone H3/H4 chaperones anti-silencing function 1 (Asf1p) and chromatin assembly factor 1 (CAF-1)in vivo. Analysis of chromatin structure by accessibility to micrococcal nuclease and DNase I digestion demonstrated that the chromatin from CAF-1 mutant yeast has increased accessibility to these enzymes. In agreement, the supercoiling of the endogenous 2μ plasmid is reduced in yeast lacking CAF-1. These results indicate that CAF-1 mutant yeast globally under-assemble their genome into chromatin, consistent with a role for CAF-1 in chromatin assemblyin vivo. By contrast,asf1mutants globally over-assemble their genome into chromatin, as suggested by decreased accessibility of their chromatin to micrococcal nuclease and DNase I digestion and increased supercoiling of the endogenous 2μ plasmid. Deletion ofASF1causes a striking loss of acetylation on histone H3 lysine 9, but this is not responsible for the altered chromatin structure inasf1mutants. These data indicate that Asf1p may have a global role in chromatin disassembly and an unexpected role in histone acetylationin vivo.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Paul Victor Sauer ◽  
Jennifer Timm ◽  
Danni Liu ◽  
David Sitbon ◽  
Elisabetta Boeri-Erba ◽  
...  

How the very first step in nucleosome assembly, deposition of histone H3-H4 as tetramers or dimers on DNA, is accomplished remains largely unclear. Here, we report that yeast chromatin assembly factor 1 (CAF1), a conserved histone chaperone complex that deposits H3-H4 during DNA replication, binds a single H3-H4 heterodimer in solution. We identify a new DNA-binding domain in the large Cac1 subunit of CAF1, which is required for high-affinity DNA binding by the CAF1 three-subunit complex, and which is distinct from the previously described C-terminal winged-helix domain. CAF1 binds preferentially to DNA molecules longer than 40 bp, and two CAF1-H3-H4 complexes concertedly associate with DNA molecules of this size, resulting in deposition of H3-H4 tetramers. While DNA binding is not essential for H3–H4 tetrasome deposition in vitro, it is required for efficient DNA synthesis-coupled nucleosome assembly. Mutant histones with impaired H3-H4 tetramerization interactions fail to release from CAF1, indicating that DNA deposition of H3-H4 tetramers by CAF1 requires a hierarchical cooperation between DNA binding, H3-H4 deposition and histone tetramerization.


2009 ◽  
Vol 29 (24) ◽  
pp. 6353-6365 ◽  
Author(s):  
Tom Rolef Ben-Shahar ◽  
Araceli G. Castillo ◽  
Michael J. Osborne ◽  
Katherine L. B. Borden ◽  
Jack Kornblatt ◽  
...  

ABSTRACT Chromatin assembly factor 1 (CAF-1) deposits histones H3 and H4 rapidly behind replication forks through an interaction with the proliferating cell nuclear antigen (PCNA), a DNA polymerase processivity factor that also binds to a number of replication enzymes and other proteins that act on nascent DNA. The mechanisms that enable CAF-1 and other PCNA-binding proteins to function harmoniously at the replication fork are poorly understood. Here we report that the large subunit of human CAF-1 (p150) contains two distinct PCNA interaction peptides (PIPs). The N-terminal PIP binds strongly to PCNA in vitro but, surprisingly, is dispensable for nucleosome assembly and only makes a modest contribution to targeting p150 to DNA replication foci in vivo. In contrast, the internal PIP (PIP2) lacks one of the highly conserved residues of canonical PIPs and binds weakly to PCNA. Surprisingly, PIP2 is essential for nucleosome assembly during DNA replication in vitro and plays a major role in targeting p150 to sites of DNA replication. Unlike canonical PIPs, such as that of p21, the two p150 PIPs are capable of preferentially inhibiting nucleosome assembly, rather than DNA synthesis, suggesting that intrinsic features of these peptides are part of the mechanism that enables CAF-1 to function behind replication forks without interfering with other PCNA-mediated processes.


2002 ◽  
Vol 22 (2) ◽  
pp. 614-625 ◽  
Author(s):  
Denise C. Krawitz ◽  
Tamar Kama ◽  
Paul D. Kaufman

ABSTRACT Chromatin assembly factor I (CAF-I) is a conserved histone H3/H4 deposition complex. Saccharomyces cerevisiae mutants lacking CAF-I subunit genes (CAC1 to CAC3) display reduced heterochromatic gene silencing. In a screen for silencing-impaired cac1 alleles, we isolated a mutation that reduced binding to the Cac3p subunit and another that impaired binding to the DNA replication protein PCNA. Surprisingly, mutations in Cac1p that abolished PCNA binding resulted in very minor telomeric silencing defects but caused silencing to be largely dependent on Hir proteins and Asf1p, which together comprise an alternative silencing pathway. Consistent with these phenotypes, mutant CAF-I complexes defective for PCNA binding displayed reduced nucleosome assembly activity in vitro but were stimulated by Asf1p-histone complexes. Furthermore, these mutant CAF-I complexes displayed a reduced preference for depositing histones onto newly replicated DNA. We also observed a weak interaction between Asf1p and Cac2p in vitro, and we hypothesize that this interaction underlies the functional synergy between these histone deposition proteins.


2012 ◽  
Vol 40 (2) ◽  
pp. 357-363 ◽  
Author(s):  
Wallace H. Liu ◽  
Mair E.A. Churchill

The eukaryotic processes of nucleosome assembly and disassembly govern chromatin dynamics, in which histones exchange in a highly regulated manner to promote genome accessibility for all DNA-dependent processes. This regulation is partly carried out by histone chaperones, which serve multifaceted roles in co-ordinating the interactions of histone proteins with modification enzymes, nucleosome remodellers, other histone chaperones and nucleosomal DNA. The molecular details of the processes by which histone chaperones promote delivery of histones among their many functional partners are still largely undefined, but promise to offer insights into epigenome maintenance. In the present paper, we review recent findings on the histone chaperone interactions that guide the assembly of histones H3 and H4 into chromatin. This evidence supports the concepts of histone post-translational modifications and specific histone chaperone interactions as guiding principles for histone H3/H4 transactions during chromatin assembly.


Sign in / Sign up

Export Citation Format

Share Document