chaperone interactions
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Ankan Bhadra ◽  
Michael Rau ◽  
Jil Daw ◽  
James Fitzpatrick ◽  
Conrad C. Weihl ◽  
...  

Abstract Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic misfolding and aggregation of proteins. As such, mutations or deficiencies within the chaperone network can lead to disease. In fact, dominant mutations in DNAJB6 (Hsp40/Sis1), an Hsp70 co-chaperone, leads to a protein aggregate myopathy termed Limb-Girdle Muscular Dystrophy Type D1 (LGMDD1). DNAJB6 client proteins and co-chaperone interactions in skeletal muscle are not known. Here, we used the yeast prion model client in conjunction with in vitro chaperone activity assays to gain mechanistic insights, and found that LGMDD1 mutants affect Hsp40 functions. Strikingly, the mutants changed the structure of client protein aggregates, as determined by altered distribution of prion strains. They also impair the Hsp70 ATPase cycle, dimerization, and substrate processing and consequently poison the function of wild-type protein. These results define the mechanisms by which LGMDD1 mutations alter chaperone activity and provide avenues for therapeutic intervention.


2021 ◽  
Author(s):  
Ankan K. Bhadra ◽  
Michael J. Rau ◽  
Jil A. Daw ◽  
James A.J. Fitzpatrick ◽  
Conrad C. Weihl ◽  
...  

Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic misfolding and aggregation of proteins. As such, mutations or deficiencies within the chaperone network can lead to disease. In fact, dominant mutations in DNAJB6 (Hsp40/Sis1), an Hsp70 co-chaperone, leads to a protein aggregate myopathy termed Limb-Girdle Muscular Dystrophy Type D1 (LGMDD1). DNAJB6 client proteins and co-chaperone interactions in skeletal muscle are not known. Here, we used the yeast prion model client in conjunction with in vitro chaperone activity assays to gain mechanistic insights, and found that LGMDD1 mutants affect Hsp40 functions. Strikingly, the mutants changed the structure of client protein aggregates, as determined by altered distribution of prion strains. They also impair the Hsp70 ATPase cycle, dimerization, and substrate processing and consequently poison the function of wild-type protein. These results define the mechanisms by which LGMDD1 mutations alter chaperone activity and provide avenues for therapeutic intervention.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2596
Author(s):  
Lisha Wang ◽  
Liza Bergkvist ◽  
Rajnish Kumar ◽  
Bengt Winblad ◽  
Pavel F. Pavlov

The dysfunction of the proteostasis network is a molecular hallmark of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Molecular chaperones are a major component of the proteostasis network and maintain cellular homeostasis by folding client proteins, assisting with intracellular transport, and interfering with protein aggregation or degradation. Heat shock protein 70 kDa (Hsp70) and 90 kDa (Hsp90) are two of the most important chaperones whose functions are dependent on ATP hydrolysis and collaboration with their co-chaperones. Numerous studies implicate Hsp70, Hsp90, and their co-chaperones in neurodegenerative diseases. Targeting the specific protein–protein interactions between chaperones and their particular partner co-chaperones with small molecules provides an opportunity to specifically modulate Hsp70 or Hsp90 function for neurodegenerative diseases. Here, we review the roles of co-chaperones in Hsp70 or Hsp90 chaperone cycles, the impacts of co-chaperones in neurodegenerative diseases, and the development of small molecules modulating chaperone/co-chaperone interactions. We also provide a future perspective of drug development targeting chaperone/co-chaperone interactions for neurodegenerative diseases.


Author(s):  
Ashley S Denney ◽  
Andrew D Weems ◽  
Michael A McMurray

Abstract Life requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate three-dimensional structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding. Single missense mutations frequently cause disease by perturbing folding despite chaperone engagement. A misfolded mutant capable of oligomerizing with wild-type proteins can dominantly poison oligomer function. We previously found evidence that human-disease-linked mutations in Saccharomyces cerevisiae septin proteins slow folding and attract chaperones, resulting in a kinetic delay in oligomerization that prevents the mutant from interfering with wild-type function. Here we build upon our septin studies to develop a new approach for identifying chaperone interactions in living cells, and use it to expand our understanding of chaperone involvement, kinetic folding delays, and oligomerization in the recessive behavior of tumor-derived mutants of the tumor suppressor p53. We find evidence of increased binding of several cytosolic chaperones to a recessive, misfolding-prone mutant, p53(V272M). Similar to our septin results, chaperone overexpression inhibits the function of p53(V272M) with minimal effect on the wild type. Unlike mutant septins, p53(V272M) is not kinetically delayed under conditions in which it is functional. Instead, it interacts with wild-type p53 but this interaction is temperature sensitive. At high temperatures or upon chaperone overexpression, p53(V272M) is excluded from the nucleus and cannot function or perturb wild-type function. Hsp90 inhibition liberates mutant p53 to enter the nucleus. These findings provide new insights into the effects of missense mutations.


2021 ◽  
Author(s):  
Ashley S. Denney ◽  
Andrew D. Weems ◽  
Michael A. McMurray

ABSTRACTLife requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate three-dimensional structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding. Single missense mutations frequently cause disease by perturbing folding despite chaperone engagement. A misfolded mutant capable of oligomerizing with wild-type proteins can dominantly poison oligomer function. We previously found evidence that human-disease-linked mutations in Saccharomyces cerevisiae septin proteins slow folding and attract chaperones, resulting in a kinetic delay in oligomerization that prevents the mutant from interfering with wild-type function. Here we build upon our septin studies to develop a new approach to identifying chaperone interactions in living cells, and use it to expand our understanding of chaperone involvement, kinetic folding delays, and oligomerization in the recessive behavior of tumor-derived mutants of the tumor suppressor p53. We find evidence of increased binding of several cytosolic chaperones to a recessive, misfolding-prone mutant, p53(V272M). Similar to our septin results, chaperone overexpression inhibits the function of p53(V272M) with minimal effect on the wild type. Unlike mutant septins, p53(V272M) is not kinetically delayed under conditions in which it is functional. Instead, it interacts with wild-type p53 but this interaction is temperature sensitive. At high temperatures or upon chaperone overexpression, p53(V272M) is excluded from the nucleus and cannot function or perturb wild-type function. Chaperone inhibition liberates the mutant to enter the nucleus where it has a slight dominant-negative effect. These findings provide new insights into the effects of missense mutations.


2021 ◽  
Author(s):  
Catherine E. Bishop ◽  
Tyler Shadid ◽  
Nathan P. Lavey ◽  
Megan L. Kempher ◽  
Nagib Ahsan ◽  
...  

AbstractThe Gram-positive bacterium Clostridioides difficile is a primary cause of hospital-acquired diarrhea, threatening both immunocompromised and healthy individuals. An important aspect of elucidating mechanisms that drive C. difficile persistence and virulence relies on developing a more complete understanding of sporulation. C. difficile sporulation is the single determinant of transmission and complicates treatment and prevention due to the chemical and physical resilience of spores. Hence, the identification of potentially druggable targets that significantly attenuate sporulation is important. In this report, we describe the impact of the loss of caseinolytic protease P (ClpP) isoforms in C. difficile strain 630 on sporulation phenotypes. Using CRISPR-Cas9 nickase mediated genome editing, stop codons were inserted early in the coding sequence for clpP1 and clpP2 to generate C. difficile mutants that no longer produced ClpP1 or ClpP2. The data show that these genetic modifications lead to altered sporulation phenotypes, germination efficiencies, and cytotoxicity. Comparative proteome profiling of C. difficile 630 WT and clpP mutants reveals potential proteolytic targets of ClpP that are involved in sporulation. These analyses further reveal the potential for preferred co-chaperone interactions for each ClpP isoform. Taken together, our results demonstrate that ClpP, a promising target in other Gram-positive pathogens, holds promise as an anti-sporulation target in C. difficile.


2020 ◽  
Vol 48 (4) ◽  
pp. 1795-1806
Author(s):  
Gareth S.A. Wright

The efficacy of superoxide dismutase-1 (SOD1) folding impacts neuronal loss in motor system neurodegenerative diseases. Mutations can prevent SOD1 post-translational processing leading to misfolding and cytoplasmic aggregation in familial amyotrophic lateral sclerosis (ALS). Evidence of immature, wild-type SOD1 misfolding has also been observed in sporadic ALS, non-SOD1 familial ALS and Parkinson's disease. The copper chaperone for SOD1 (hCCS) is a dedicated and specific chaperone that assists SOD1 folding and maturation to produce the active enzyme. Misfolded or misfolding prone SOD1 also interacts with heat shock proteins and macrophage migration inhibitory factor to aid folding, refolding or degradation. Recognition of specific SOD1 structures by the molecular chaperone network and timely dissociation of SOD1-chaperone complexes are, therefore, important steps in SOD1 processing. Harnessing these interactions for therapeutic benefit is actively pursued as is the modulation of SOD1 behaviour with pharmacological and peptide chaperones. This review highlights the structural and mechanistic aspects of a selection of SOD1-chaperone interactions together with their impact on disease models.


Sign in / Sign up

Export Citation Format

Share Document