scholarly journals A Novel Stat3 Binding Motif in Gab2 Mediates Transformation of Primary Hematopoietic Cells by the Stk/Ron Receptor Tyrosine Kinase in Response to Friend Virus Infection

2007 ◽  
Vol 27 (10) ◽  
pp. 3708-3715 ◽  
Author(s):  
Shuang Ni ◽  
Chunmei Zhao ◽  
Gen-Sheng Feng ◽  
Robert F. Paulson ◽  
Pamela H. Correll

ABSTRACT Friend erythroleukemia virus has long served as a paradigm for the study of the multistage progression of leukemia. Friend virus infects erythroid progenitor cells, followed by an initial polyclonal expansion of infected cells, which is driven by the activation of a naturally occurring truncated form of the Stk receptor tyrosine kinase (Sf-Stk). Subsequently, the accumulation of additional mutations in p53 and the activation of PU.1 result in full leukemic transformation. The early stages of transformation induced by Friend virus are characterized in vitro by the Epo-independent growth of infected erythroblasts. We have shown previously that this transforming event requires the kinase activity and Grb2 binding site of Sf-Stk and the recruitment of a Grb2/Gab2 complex to Sf-Stk. Here, we demonstrate that Stat3 is required for the Epo-independent growth of Friend virus-infected cells and that the activation of Stat3 by Sf-Stk is mediated by a novel Stat3 binding site in Gab2. These results underscore a central role for Stat3 in hematopoietic transformation and describe a previously unidentified role for Gab2 in the recruitment and activation of Stat3 in response to transforming signals generated by tyrosine kinases.

2020 ◽  
Vol 12 ◽  
pp. 175883592092006
Author(s):  
Hang-Ping Yao ◽  
Sreedhar Reddy Suthe ◽  
Xiang-Min Tong ◽  
Ming-Hai Wang

The recepteur d’origine nantais (RON) receptor tyrosine kinase, belonging to the mesenchymal-to-epithelial transition proto-oncogene family, has been implicated in the pathogenesis of cancers derived from the colon, lung, breast, and pancreas. These findings lay the foundation for targeting RON for cancer treatment. However, development of RON-targeted therapeutics has not gained sufficient attention for the last decade. Although therapeutic monoclonal antibodies (TMABs) targeting RON have been validated in preclinical studies, results from clinical trials have met with limited success. This outcome diminishes pharmaceutical enthusiasm for further development of RON-targeted therapeutics. Recently, antibody–drug conjugates (ADCs) targeting RON have drawn special attention owing to their increased therapeutic activity. The rationale for developing anti-RON ADCs is based on the observation that cancer cells are not sufficiently addicted to RON signaling for survival. Thus, TMAB-mediated inhibition of RON signaling is ineffective for clinical application. In contrast, anti-RON ADCs combine a target-specific antibody with potent cytotoxins for cancer cell killing. This approach not only overcomes the shortcomings in TMAB-targeted therapies but also holds the promise for advancing anti-RON ADCs into clinical trials. In this review, we discuss the latest advancements in the development of anti-RON ADCs for targeted cancer therapy including drug conjugation profile, pharmacokinetic properties, cytotoxic effect in vitro, efficacy in tumor models, and toxicological activities in primates.


1991 ◽  
Vol 11 (5) ◽  
pp. 2496-2502
Author(s):  
V Lhoták ◽  
P Greer ◽  
K Letwin ◽  
T Pawson

The elk gene encodes a novel receptorlike protein-tyrosine kinase, which belongs to the eph subfamily. We have previously identified a partial cDNA encompassing the elk catalytic domain (K. Letwin, S.-P. Yee, and T. Pawson, Oncogene 3:621-678, 1988). Using this cDNA as a probe, we have isolated cDNAs spanning the entire rat elk coding sequence. The predicted Elk protein contains all the hallmarks of a receptor tyrosine kinase, including an N-terminal signal sequence, a cysteine-rich extracellular domain, a membrane-spanning segment, a cytoplasmic tyrosine kinase domain, and a C-terminal tail. In both amino acid sequence and overall structure, Elk is most similar to the Eph and Eck protein-tyrosine kinases, suggesting that the eph, elk, and eck genes encode members of a new subfamily of receptorlike tyrosine kinases. Among rat tissues, elk expression appears restricted to brain and testes, with the brain having higher levels of both elk RNA and protein. Elk protein immunoprecipitated from a rat brain lysate becomes phosphorylated on tyrosine in an in vitro kinase reaction, consistent with the prediction that the mammalian elk gene encodes a tyrosine kinase capable of autophosphorylation. The characteristics of the Elk tyrosine kinase suggest that it may be involved in cell-cell interactions in the nervous system.


1995 ◽  
Vol 15 (9) ◽  
pp. 4810-4818 ◽  
Author(s):  
K M Lai ◽  
J P Olivier ◽  
G D Gish ◽  
M Henkemeyer ◽  
J McGlade ◽  
...  

Antibodies to the human Shc adaptor protein were used to isolate a cDNA encoding a Drosophila Shc protein (dShc) by screening an expression library. The dshc gene, which maps to position 67B-C on the third chromosome, encodes a 45-kDa protein that is widely expressed throughout the Drosophila life cycle. In flies, the dShc protein physically associates with the activated Drosophila epidermal growth factor receptor homolog (DER) and is inducibly phosphorylated on tyrosine by DER. The 45-kDa dShc protein is closely related both in overall organization and in amino acid sequence (46% identity) to the 52-kDa mammalian Shc isoform. In addition to a C-terminal Src homology 2 (SH2) domain, dShc contains an N-terminal phosphotyrosine-binding (PTB) domain, which associates in vitro with the autophosphorylated DER receptor tyrosine kinase and with phosphopeptides containing an Asn-Pro-X-pTyr motif, where pTyr stands for phosphotyrosine. A potential binding site for the dShc PTB domain is located at Tyr-1228 of DER. These results indicate that the shc gene has been conserved in evolution, as have the binding properties of the Shc PTB and SH2 domains. Despite the close relationship between the Drosophila and mammalian Shc proteins, dShc lacks the high-affinity Grb2-binding site found in mammalian Shc, suggesting that Shc proteins may have functions in addition to regulation of the Ras pathway.


2009 ◽  
Vol 84 (5) ◽  
pp. 2223-2235 ◽  
Author(s):  
Shihan He ◽  
Shuang Ni ◽  
Shailaja Hegde ◽  
Xin Wang ◽  
Daniel R. Sharda ◽  
...  

ABSTRACT Friend virus induces an erythroleukemia in susceptible mice that is initiated by the interaction of the Friend virus-encoded glycoprotein gp55 with the erythropoietin (Epo) receptor and the product of the host Fv2 gene, a naturally occurring truncated form of the Stk receptor tyrosine kinase (Sf-Stk). We have previously demonstrated that the activation of Sf-Stk, recruitment of a Grb2/Gab2/Stat3 signaling complex, and induction of Pu.1 expression by Stat3 are required for the development of the early stage of Friend disease both in vitro and in vivo. Here we demonstrate that the interaction of gp55 with Sf-Stk is dependent on cysteine residues in the ecotropic domain of gp55 and the extracellular domain of Sf-Stk. Point mutation of these cysteine residues or deletion of these domains inhibits the ability of gp55 to interact with Sf-Stk, resulting in the inability of these proteins to promote the Epo-independent growth of erythroid progenitor cells. We also demonstrate that the interaction of gp55 with Sf-Stk does not promote dimerization of Sf-Stk but results in enhanced phosphorylation of Sf-Stk and the relocalization of Sf-Stk from the cytosol to the plasma membrane. Finally, we demonstrate that a constitutively active form of Sf-Stk (Sf-StkM330T), as well as its human counterpart, Sf-Ron, promotes Epo-independent colony formation in the absence of gp55 and that this response is also dependent on the cysteines in the extracellular domains of Sf-StkM330T and Sf-Ron. These data suggest that the cysteines in the extracellular domains of Sf-Stk and Sf-Ron may also mediate the interaction of these truncated receptors with other cellular factors that regulate their ability to promote cytokine-independent growth.


1991 ◽  
Vol 11 (5) ◽  
pp. 2496-2502 ◽  
Author(s):  
V Lhoták ◽  
P Greer ◽  
K Letwin ◽  
T Pawson

The elk gene encodes a novel receptorlike protein-tyrosine kinase, which belongs to the eph subfamily. We have previously identified a partial cDNA encompassing the elk catalytic domain (K. Letwin, S.-P. Yee, and T. Pawson, Oncogene 3:621-678, 1988). Using this cDNA as a probe, we have isolated cDNAs spanning the entire rat elk coding sequence. The predicted Elk protein contains all the hallmarks of a receptor tyrosine kinase, including an N-terminal signal sequence, a cysteine-rich extracellular domain, a membrane-spanning segment, a cytoplasmic tyrosine kinase domain, and a C-terminal tail. In both amino acid sequence and overall structure, Elk is most similar to the Eph and Eck protein-tyrosine kinases, suggesting that the eph, elk, and eck genes encode members of a new subfamily of receptorlike tyrosine kinases. Among rat tissues, elk expression appears restricted to brain and testes, with the brain having higher levels of both elk RNA and protein. Elk protein immunoprecipitated from a rat brain lysate becomes phosphorylated on tyrosine in an in vitro kinase reaction, consistent with the prediction that the mammalian elk gene encodes a tyrosine kinase capable of autophosphorylation. The characteristics of the Elk tyrosine kinase suggest that it may be involved in cell-cell interactions in the nervous system.


2021 ◽  
Vol 14 (7) ◽  
pp. 626
Author(s):  
Julie Bolcaen ◽  
Shankari Nair ◽  
Cathryn H. S. Driver ◽  
Tebatso M. G. Boshomane ◽  
Thomas Ebenhan ◽  
...  

Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.


2013 ◽  
Vol 4 (5) ◽  
pp. 689 ◽  
Author(s):  
Nicole Teller ◽  
Matthias Roth ◽  
Melanie Esselen ◽  
Diana Fridrich ◽  
Ute Boettler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document