scholarly journals Targeted Disruption of the Basic Krüppel-Like Factor Gene (Klf3) Reveals a Role in Adipogenesis

2008 ◽  
Vol 28 (12) ◽  
pp. 3967-3978 ◽  
Author(s):  
Nancy Sue ◽  
Briony H. A. Jack ◽  
Sally A. Eaton ◽  
Richard C. M. Pearson ◽  
Alister P. W. Funnell ◽  
...  

ABSTRACT Krüppel-like factors (KLFs) recognize CACCC and GC-rich sequences in gene regulatory elements. Here, we describe the disruption of the murine basic Krüppel-like factor gene (Bklf or Klf3). Klf3 knockout mice have less white adipose tissue, and their fat pads contain smaller and fewer cells. Adipocyte differentiation is altered in murine embryonic fibroblasts from Klf3 knockouts. Klf3 expression was studied in the 3T3-L1 cellular system. Adipocyte differentiation is accompanied by a decline in Klf3 expression, and forced overexpression of Klf3 blocks 3T3-L1 differentiation. Klf3 represses transcription by recruiting C-terminal binding protein (CtBP) corepressors. CtBPs bind NADH and may function as metabolic sensors. A Klf3 mutant that does not bind CtBP cannot block adipogenesis. Other KLFs, Klf2, Klf5, and Klf15, also regulate adipogenesis, and functional CACCC elements occur in key adipogenic genes, including in the C/ebpα promoter. We find that C/ebpα is derepressed in Klf3 and Ctbp knockout fibroblasts and adipocytes from Klf3 knockout mice. Chromatin immunoprecipitations confirm that Klf3 binds the C/ebpα promoter in vivo. These results implicate Klf3 and CtBP in controlling adipogenesis.

Genetics ◽  
2019 ◽  
Vol 212 (3) ◽  
pp. 729-742 ◽  
Author(s):  
Lena Annika Street ◽  
Ana Karina Morao ◽  
Lara Heermans Winterkorn ◽  
Chen-Yu Jiao ◽  
Sarah Elizabeth Albritton ◽  
...  

Condensins are evolutionarily conserved protein complexes that are required for chromosome segregation during cell division and genome organization during interphase. In Caenorhabditis elegans, a specialized condensin, which forms the core of the dosage compensation complex (DCC), binds to and represses X chromosome transcription. Here, we analyzed DCC localization and the effect of DCC depletion on histone modifications, transcription factor binding, and gene expression using chromatin immunoprecipitation sequencing and mRNA sequencing. Across the X, the DCC accumulates at accessible gene regulatory sites in active chromatin and not heterochromatin. The DCC is required for reducing the levels of activating histone modifications, including H3K4me3 and H3K27ac, but not repressive modification H3K9me3. In X-to-autosome fusion chromosomes, DCC spreading into the autosomal sequences locally reduces gene expression, thus establishing a direct link between DCC binding and repression. Together, our results indicate that DCC-mediated transcription repression is associated with a reduction in the activity of X chromosomal gene regulatory elements.


2015 ◽  
Vol 2015 (1) ◽  
pp. pdb.top083642 ◽  
Author(s):  
Leila Taher ◽  
Leelavati Narlikar ◽  
Ivan Ovcharenko

2021 ◽  
Author(s):  
Moataz Dowaidar

Changes in gene expression levels above or below a particular threshold may have a dramatic impact on phenotypes, leading to a wide spectrum of human illnesses. Gene-regulatory elements, also known as cis-regulatory elements (CREs), may change the amount, timing, or location (cell/tissue type) of gene expression, whereas mutations in a gene's coding sequence may result in lower or higher gene expression levels resulting in protein loss or gain. Loss-of-function mutations in both genes produce recessive human illness, while haploinsufficient mutations in 65 genes are also known to be deleterious due to function gain, according to the ClinVar1 and ClinGen3 databases. CREs are promoters living near to a gene's transcription start site and switching it on at predefined times, places, and levels. Other distal CREs, like enhancers and silencers, are temporal and tissue-specific control promoters. Enhancers activate promoters, commonly referred to as "promoters," whereas silencers turn them off. Insulators also restrict promiscuous interactions between enhancers and gene promoters. Systematic genomic approaches can help understand the cis-regulatory circuitry of gene expression by highly detecting and functionally defining these CREs. This includes the new use of CRISPR–CRISPR-associated protein 9 (CRISPR–Cas9) and other editing approaches to discover CREs. Cis-Regulation therapy (CRT) provides many promises to heal human ailments. CRT may be used to upregulate or downregulate disease-causing genes due to lower or higher levels of expression, and it may also be used to precisely adjust the expression of genes that assist in alleviating disease features. CRT may employ proteins that generate epigenetic modifications like methylation, histone modification, or gene expression regulation looping. Weighing CRT's advantages and downsides against alternative treatment methods is crucial. CRT platforms might become a practical technique to treat many genetic diseases that now lack treatment alternatives if academics, patient communities, clinicians, regulators and industry work together.


PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0198463
Author(s):  
Bhaven B. Patel ◽  
Andres M. Lebensohn ◽  
Ganesh V. Pusapati ◽  
Jan E. Carette ◽  
Julia Salzman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document