Sequence heterogeneity, multiplicity, and genomic organization of alpha- and beta-tubulin genes in sea urchins

1981 ◽  
Vol 1 (12) ◽  
pp. 1125-1137
Author(s):  
D Alexandraki ◽  
J V Ruderman

We analyzed the multiplicity, heterogeneity, and organization of the genes encoding the alpha and beta tubulins in the sea urchin Lytechinus pictus by using cloned complementary deoxyribonucleic acid (cDNA) and genomic tubulin sequences. cDNA clones were constructed by using immature spermatogenic testis polyadenylic acid-containing ribonucleic acid as a template. alpha- and beta-tubulin clones were identified by hybrid selection and in vitro translation of the corresponding messenger ribonucleic acids, followed by immunoprecipitation and two-dimensional gel electrophoresis of the translation products. The alpha cDNA clone contains a sequence that encodes the 48 C-terminal amino acids of alpha tubulin and 104 base pairs of the 3' nontranslated portion of the messenger ribonucleic acid. The beta cDNA insertion contains the coding sequence for the 100-C terminal amino acids of beta tubulin and 83 pairs of the 3' noncoding sequence. Hybrid selections performed at different criteria demonstrated the presence of several heterogeneous, closely related tubulin messenger ribonucleic acids, suggesting the existence of heterogeneous alpha- and beta-tubulin genes. Hybridization analyses indicated that there are at least 9 to 13 sequences for each of the two tubulin gene families per haploid genome. Hybridization of the cDNA probes to both total genomic DNA and cloned germline DNA fragments gave no evidence for close physical linkage of alpha-tubulin genes with beta-tubulin genes at the DNA level. In contrast, these experiments indicated that some genes within the same family are clustered.

1981 ◽  
Vol 1 (12) ◽  
pp. 1125-1137 ◽  
Author(s):  
D Alexandraki ◽  
J V Ruderman

We analyzed the multiplicity, heterogeneity, and organization of the genes encoding the alpha and beta tubulins in the sea urchin Lytechinus pictus by using cloned complementary deoxyribonucleic acid (cDNA) and genomic tubulin sequences. cDNA clones were constructed by using immature spermatogenic testis polyadenylic acid-containing ribonucleic acid as a template. alpha- and beta-tubulin clones were identified by hybrid selection and in vitro translation of the corresponding messenger ribonucleic acids, followed by immunoprecipitation and two-dimensional gel electrophoresis of the translation products. The alpha cDNA clone contains a sequence that encodes the 48 C-terminal amino acids of alpha tubulin and 104 base pairs of the 3' nontranslated portion of the messenger ribonucleic acid. The beta cDNA insertion contains the coding sequence for the 100-C terminal amino acids of beta tubulin and 83 pairs of the 3' noncoding sequence. Hybrid selections performed at different criteria demonstrated the presence of several heterogeneous, closely related tubulin messenger ribonucleic acids, suggesting the existence of heterogeneous alpha- and beta-tubulin genes. Hybridization analyses indicated that there are at least 9 to 13 sequences for each of the two tubulin gene families per haploid genome. Hybridization of the cDNA probes to both total genomic DNA and cloned germline DNA fragments gave no evidence for close physical linkage of alpha-tubulin genes with beta-tubulin genes at the DNA level. In contrast, these experiments indicated that some genes within the same family are clustered.


1985 ◽  
Vol 5 (9) ◽  
pp. 2389-2398 ◽  
Author(s):  
C D Silflow ◽  
R L Chisholm ◽  
T W Conner ◽  
L P Ranum

Full-length cDNA clones corresponding to the transcripts of the two alpha-tubulin genes in Chlamydomonas reinhardi were isolated. DNA sequence analysis of the cDNA clones and cloned gene fragments showed that each gene contains 1,356 base pairs of coding sequence, predicting alpha-tubulin products of 451 amino acids. Of the 27 nucleotide differences between the two genes, only two result in predicted amino acid differences between the two gene products. In the more divergent alpha 2 gene, a leucine replaces an arginine at amino acid 308, and a valine replaces a glycine at amino acid 366. The results predicted that two alpha-tubulin proteins with different net charges are produced as primary gene products. The predicted amino acid sequences are 86 and 70% homologous with alpha-tubulins from rat brain and Schizosaccharomyces pombe, respectively. Each gene had two intervening sequences, located at identical positions. Portions of an intervening sequence highly conserved between the two beta-tubulin genes are also found in the second intervening sequence of each of the alpha genes. These results, together with our earlier report of the beta-tubulin sequences in C. reinhardi, present a picture of the total complement of genetic information for tubulin in this organism.


1985 ◽  
Vol 5 (9) ◽  
pp. 2389-2398
Author(s):  
C D Silflow ◽  
R L Chisholm ◽  
T W Conner ◽  
L P Ranum

Full-length cDNA clones corresponding to the transcripts of the two alpha-tubulin genes in Chlamydomonas reinhardi were isolated. DNA sequence analysis of the cDNA clones and cloned gene fragments showed that each gene contains 1,356 base pairs of coding sequence, predicting alpha-tubulin products of 451 amino acids. Of the 27 nucleotide differences between the two genes, only two result in predicted amino acid differences between the two gene products. In the more divergent alpha 2 gene, a leucine replaces an arginine at amino acid 308, and a valine replaces a glycine at amino acid 366. The results predicted that two alpha-tubulin proteins with different net charges are produced as primary gene products. The predicted amino acid sequences are 86 and 70% homologous with alpha-tubulins from rat brain and Schizosaccharomyces pombe, respectively. Each gene had two intervening sequences, located at identical positions. Portions of an intervening sequence highly conserved between the two beta-tubulin genes are also found in the second intervening sequence of each of the alpha genes. These results, together with our earlier report of the beta-tubulin sequences in C. reinhardi, present a picture of the total complement of genetic information for tubulin in this organism.


1993 ◽  
Vol 105 (4) ◽  
pp. 903-911 ◽  
Author(s):  
L. Trivinos-Lagos ◽  
T. Ohmachi ◽  
C. Albrightson ◽  
R.G. Burns ◽  
H.L. Ennis ◽  
...  

As a step in the characterization of the microtubule system of Dictyostelium discoideum, we have isolated and sequenced full-length cDNA clones that encode the Dictyostelium alpha- and beta-tubulins, as well as the Dictyostelium alpha-tubulin gene. Southern blot analysis suggests that Dictyostelium is unusual in that its genome contains single alpha- and beta-tubulin genes, rather than the multi-gene family common in most eukaryotic organisms. The complete alpha-tubulin cDNA contains 1558 nucleotides, with an open reading frame, that encode a protein of 457 amino acids. The complete beta-tubulin cDNA contains 1572 nucleotides and encodes a protein of 456 amino acids. Analysis of the deduced protein sequences indicates that while there is a significant degree of sequence similarity between the Dictyostelium tubulins and other known tubulins, the Dictyostelium alpha-tubulin displays the greatest sequence divergence yet described. Single alpha- and beta-tubulin transcripts are detected by northern blot analysis during all stages of Dictyostelium development. The highest levels of message accumulate late in germinating spores and vegetative amoebae. Despite changes in alpha- and beta-tubulin mRNA levels, protein levels remain constant throughout development. We have expressed the carboxy-terminal two-thirds of the alpha- and beta-tubulins as trpE fusions in Escherichia coli and used this protein to produce polyclonal antisera specific for the Dictyostelium alpha- and beta-tubulins. These antisera recognize one alpha- and two beta-tubulin spots on western blots of 2-D gels and, by indirect immunofluorescence, both recognize the interphase and mitotic microtubule arrays in vegetative amoebae.


1983 ◽  
Vol 3 (6) ◽  
pp. 1070-1076
Author(s):  
S M Landfear ◽  
D McMahon-Pratt ◽  
D F Wirth

The arrangement of developmentally regulated alpha- and beta-tubulin genes has been studied in the parasitic protozoan Leishmania enriettii by using Southern blot hybridization analysis. The alpha-tubulin genes occur in a tandem repeat whose monomeric unit may be represented by a 2-kilobase PstI fragment. Similarly, the beta-tubulin genes probably occur in a separate tandem repeat consisting of approximately 4-kilobase units unlinked to the alpha-tubulin repeats.


1993 ◽  
Vol 106 (1) ◽  
pp. 209-218 ◽  
Author(s):  
S.W. James ◽  
C.D. Silflow ◽  
P. Stroom ◽  
P.A. Lefebvre

A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii was isolated by using the amiprophos-methyl-resistant mutation apm1-18 as a background to select new mutants that showed increased resistance to the drug. The upA12 mutation caused twofold resistance to amiprophos-methyl and oryzalin, and twofold hypersensitivity to the microtubule-stabilizing drug taxol, suggesting that the mutation enhanced microtubule stability. The resistance mutation was semi-dominant and mapped to the same interval on linkage group III as the alpha 1-tubulin gene. Two-dimensional gel immunoblots of proteins in the mutant cells revealed two electrophoretically altered alpha-tubulin isoforms, one of which was acetylated and incorporated into microtubules in the axoneme. The mutant isoforms co-segregated with the drug-resistance phenotypes when mutant upA12 was backcrossed to wild-type cells. Two-dimensional gel analysis of in vitro translation products showed that the non-acetylated variant alpha-tubulin was a primary gene product. DNA sequence analysis of the alpha 1-tubulin genes from mutant and wild-type cells revealed a single missense mutation, which predicted a change in codon 24 from tyrosine in wild type to histidine in mutant upA12. This alteration in the predicted amino acid sequence corroborated the approximately +1 basic charge shift observed for the variant alpha-tubulins. The mutant allele of the alpha 1-tubulin gene was designated tua1-1.


1983 ◽  
Vol 3 (8) ◽  
pp. 1333-1342
Author(s):  
J F Bond ◽  
S R Farmer

The expression of alpha-tubulin, beta-tubulin, and actin mRNA during rat brain development has been examined by using specific cDNA clones and in vitro translation techniques. During brain maturation (0 to 80 days postnatal), these mRNA species undergo a significant decrease in abundance. The kinetics of this decrease varies between the cerebrum and the cerebellum. These mRNAs are most abundant in both tissues during week 1 postnatal, each representing 10 to 15% of total mRNA activity. Both alpha- and beta-tubulin mRNA content decreases by 90 to 95% in the cerebrum after day 11 postnatal, and 70 to 80% decreases in the cerebellum after day 16. Actin sequences also decrease but to a lesser extent in both tissues (i.e., 50%). These decreases coincide with the major developmental morphological changes (i.e., neurite extension) occurring during this postnatal period. These studies have also identified the appearance of a new 2.5-kilobase beta-tubulin mRNA species, which is more predominant in the cerebellar cytoplasm. The appearance of this form occurs at a time when the major 1.8-kilobase beta-tubulin mRNA levels are declining. The possibility that the tubulin multigene family is phenotypically expressed and then this expression responds to the morphological state of the nerve cells is discussed.


1983 ◽  
Vol 3 (6) ◽  
pp. 1070-1076 ◽  
Author(s):  
S M Landfear ◽  
D McMahon-Pratt ◽  
D F Wirth

The arrangement of developmentally regulated alpha- and beta-tubulin genes has been studied in the parasitic protozoan Leishmania enriettii by using Southern blot hybridization analysis. The alpha-tubulin genes occur in a tandem repeat whose monomeric unit may be represented by a 2-kilobase PstI fragment. Similarly, the beta-tubulin genes probably occur in a separate tandem repeat consisting of approximately 4-kilobase units unlinked to the alpha-tubulin repeats.


1990 ◽  
Vol 10 (10) ◽  
pp. 5295-5304
Author(s):  
B Weinstein ◽  
F Solomon

Overexpression of alpha- and beta-tubulin genes in Saccharomyces cerevisiae, separately or together, leads to accumulation of large excesses of each of the polypeptides and arrest of cell division. However, other consequences of overexpression of these genes differ in several ways. As shown previously (D. Burke, P. Gasdaska, and L. Hartwell, Mol. Cell. Biol. 9:1049-1059, 1989), overexpression of beta-tubulin leads, at early times, to loss of microtubule structures and loss of viability. Eventually, the excess beta-tubulin forms abnormal structures. We show here that, in contrast, overexpression of alpha-tubulin led to none of these phenotypes and in fact could suppress each of the phenotypes associated with beta-tubulin accumulation. Truncated forms of beta-tubulin that were not competent to carry out microtubule functions also failed to elicit the beta-tubulin-specific phenotypes when overexpressed. The data support the hypothesis that beta-tubulin in excess over alpha-tubulin is uniquely toxic, perhaps because it interferes with normal microtubule assembly.


Sign in / Sign up

Export Citation Format

Share Document