scholarly journals Transformation of murine bone marrow cells with combined v-raf-v-myc oncogenes yields clonally related mature B cells and macrophages.

1990 ◽  
Vol 10 (7) ◽  
pp. 3562-3568 ◽  
Author(s):  
M Principato ◽  
J L Cleveland ◽  
U R Rapp ◽  
K L Holmes ◽  
J H Pierce ◽  
...  

Murine bone marrow cells infected with replication-defective retroviruses containing v-raf alone or v-myc alone yielded transformed pre-B cell lines, while a retroviral construct containing both v-raf and v-myc oncogenes produced clonally related populations of mature B cells and mature macrophages. The genealogy of these transformants demonstrates that mature myeloid cells were derived from cells with apparent B-lineage commitment and functional immunoglobulin rearrangements. This system should facilitate studies of developmental relationships in hematopoietic differentiation and analysis of lineage determination.

1990 ◽  
Vol 10 (7) ◽  
pp. 3562-3568
Author(s):  
M Principato ◽  
J L Cleveland ◽  
U R Rapp ◽  
K L Holmes ◽  
J H Pierce ◽  
...  

Murine bone marrow cells infected with replication-defective retroviruses containing v-raf alone or v-myc alone yielded transformed pre-B cell lines, while a retroviral construct containing both v-raf and v-myc oncogenes produced clonally related populations of mature B cells and mature macrophages. The genealogy of these transformants demonstrates that mature myeloid cells were derived from cells with apparent B-lineage commitment and functional immunoglobulin rearrangements. This system should facilitate studies of developmental relationships in hematopoietic differentiation and analysis of lineage determination.


1986 ◽  
Vol 6 (1) ◽  
pp. 183-194
Author(s):  
L A Serunian ◽  
N Rosenberg

Abelson murine leukemia virus (A-MuLV) infection of mouse bone marrow cells usually leads to transformation of pre-B cells. However, when the environment is modified by the continuous presence of lipopolysaccharide (LPS), two novel types of membrane immunoglobulin (mIg)-positive B cell lines are generated. Because the cells which give rise to these cell lines copurify with mIg-positive bone marrow cells, the cell lines arise as a result of A-MuLV interaction with a new type of in vitro target cell. The cell lines generated fall into two groups which differ in several phenotypic characteristics. Group 1 cells are more differentiated than the typical pre-B cell transformant in that they synthesize mIgM and appear to resemble virgin B cells. The group 1 cells do not secrete immunoglobulin and are independent of LPS for growth. In addition, these cell lines synthesize the Abelson P160 protein, contain integrated abl proviral DNA, and are highly tumorigenic in syngeneic animals. The group 2 cell lines differ markedly from both the group 1 cells and from typical, pre-B cell A-MuLV transformants. These cells are mIgG positive and secrete large amounts of immunoglobulin into the culture medium. The cell lines are comprised of both adherent and nonadherent cells and do not synthesize P160 or contain integrated v-abl sequences. The group 2 cells are nontumorigenic in syngeneic animals and require LPS for growth and viability. Both types of cells have remained in culture for over 2 years with no changes in their phenotypic characteristics. This A-MuLV infection system and the novel mIg-positive cell lines may serve as useful models for studying biochemical and molecular properties of mature B cells.


1986 ◽  
Vol 6 (1) ◽  
pp. 183-194 ◽  
Author(s):  
L A Serunian ◽  
N Rosenberg

Abelson murine leukemia virus (A-MuLV) infection of mouse bone marrow cells usually leads to transformation of pre-B cells. However, when the environment is modified by the continuous presence of lipopolysaccharide (LPS), two novel types of membrane immunoglobulin (mIg)-positive B cell lines are generated. Because the cells which give rise to these cell lines copurify with mIg-positive bone marrow cells, the cell lines arise as a result of A-MuLV interaction with a new type of in vitro target cell. The cell lines generated fall into two groups which differ in several phenotypic characteristics. Group 1 cells are more differentiated than the typical pre-B cell transformant in that they synthesize mIgM and appear to resemble virgin B cells. The group 1 cells do not secrete immunoglobulin and are independent of LPS for growth. In addition, these cell lines synthesize the Abelson P160 protein, contain integrated abl proviral DNA, and are highly tumorigenic in syngeneic animals. The group 2 cell lines differ markedly from both the group 1 cells and from typical, pre-B cell A-MuLV transformants. These cells are mIgG positive and secrete large amounts of immunoglobulin into the culture medium. The cell lines are comprised of both adherent and nonadherent cells and do not synthesize P160 or contain integrated v-abl sequences. The group 2 cells are nontumorigenic in syngeneic animals and require LPS for growth and viability. Both types of cells have remained in culture for over 2 years with no changes in their phenotypic characteristics. This A-MuLV infection system and the novel mIg-positive cell lines may serve as useful models for studying biochemical and molecular properties of mature B cells.


Blood ◽  
1995 ◽  
Vol 85 (7) ◽  
pp. 1850-1857 ◽  
Author(s):  
MS Merchant ◽  
BA Garvy ◽  
RL Riley

New Zealand Black (NZB) autoimmune mice exhibit progressive, age-dependent reduction in bone marrow pre-B cells. To ascertain the capacity of NZB bone marrow B220-cells to generate pre-B cells in a supportive environment, B-lineage (B220+) cell-depleted and T-cell-depleted bone marrow cells from NZB mice at 1 to 3, 6, and 10 to 11 months of age were adoptively transferred into irradiated (200R) C.B17 severe combined immunodeficient (SCID) mice. Bone marrow pre-B cells (sIgM- CD43[S7]- B220+) were assessed 3 and 10 weeks posttransfer. Pre-B cells and B cells were reconstituted in SCID recipients of older NZB progenitor cells by 10 weeks posttransplant, in contrast to the very low numbers of pre-B cells present in the donor bone marrow. However, B220-bone marrow progenitor cells from greater than 10-month-old NZB donors were deficient in the reconstitution of both pre-B and B cells in SCID recipients at 3 weeks post-transfer. This reflected a slower kinetics of repopulation, because older NZB-->SCID recipients had numbers of both pre-B and B cells similar to recipients of young NZB progenitor cells by 10 weeks posttransplant. Adoptive transfer of equal mixtures of BALB/c and older NZB bone marrow B220-progenitor cells into irradiated C.B17 SCID recipients failed to demonstrate active suppression. These results suggest that, with age, NZB bone marrow has reduced numbers and/or function of early B220-B-lineage progenitors. Consistent with this hypothesis, B220-bone marrow cells from older NZB mice were deficient in progenitors capable of yielding interleukin-7 (IL-7) responsive pre-B cells in vitro on stimulation with the pre-B-cell potentiating factor, insulin-like growth factor 1 (IGF-1).


Blood ◽  
1994 ◽  
Vol 84 (11) ◽  
pp. 3660-3666 ◽  
Author(s):  
Q Zhao ◽  
T Waldschmidt ◽  
E Fisher ◽  
CJ Herrera ◽  
AM Krieg

Fluorescein isothiocyanate (FITC)-conjugated phosphodiester and phosphorothioate oligonucleotides were used in four-color flow cytometry with murine bone marrow cells stained with monoclonal antibody specific for the differentiation markers B220, S7 (CD43), and BP-1 to show possible stage-specific oligonucleotide uptake. Relatively low uptake was observed among pre-Pro- and early Pro-B cells. Late Pro- B- and pre-B cells had increased oligonucleotide uptake, whereas B cells had a lower level. Cell membrane binding of oligonucleotides varied during B-cell differentiation in parallel with internalization, which was documented by confocal microscopy. An FITC-conjugated polyanionic dextran sulfate also showed differentiation-related B-cell association, suggesting the presence of cell membrane binding sites specific for polyanions as opposed to a unique feature of the DNA backbone. Interpretation of antisense experiments in murine bone marrow cells will need to account for the heterogeneous oligonucleotide uptake among differentiating B cells.


1983 ◽  
Vol 158 (2) ◽  
pp. 616-622 ◽  
Author(s):  
M Hansson ◽  
K Falk ◽  
I Ernberg

In vitro infection of human B lymphocytes with Epstein-Barr virus (EBV) results in establishment of B lymphoblastoid cell lines that reflect normal B cell phenotypes. In this study we have investigated whether immature B cells from fetal bone marrow and liver can serve as targets for EBV. The fetal bone marrow cells were readily transformed by EBV. Among the resulting cell lines, five were surface Ig (sIg)-negative. Three B cell-associated antigens defined by monoclonal antibodies were expressed to the same extent on the fetal cell lines, whether they belonged to the sIg- or sIg+ group. The various differentiation stages that these cell lines may represent are discussed.


1989 ◽  
Vol 9 (1) ◽  
pp. 67-73 ◽  
Author(s):  
W S Alexander ◽  
J M Adams ◽  
S Cory

Although transgenic mice bearing a c-myc gene controlled by the immunoglobulin heavy-chain enhancer (E mu) eventually develop B-lymphoid tumors, B-lineage cells from preneoplastic bone marrow express the transgene but do not grow autonomously or produce tumors in mice. To determine whether other oncogenes can cooperate with myc to transform B-lineage cells, we compared the in vitro growth and tumorigenicity of normal and E mu-myc bone marrow cells infected with retroviruses bearing the v-H-ras, v-raf, or v-abl oncogene. The v-H-ras and v-raf viruses both generated a rapid polyclonal expansion of E mu-myc pre-B bone marrow cells in liquid culture and 10- to 100-fold more pre-B lymphoid colonies than normal in soft agar. The infected transgenic cells were autonomous, cloned efficiently in agar, and grew as tumors in nude mice. While many pre-B cells from normal marrow could also be induced to proliferate by the v-raf virus, these cells required a stromal feeder layer, did not clone in agar, and were not malignant. Most normal cells stimulated to grow by v-H-ras also cloned poorly in agar, and only rare cells were tumorigenic. With the v-abl virus, no more cells were transformed from E mu-myc than normal marrow and the proportion of tumorigenic pre-B clones was not elevated. These results suggest that both v-H-ras and v-raf, but apparently not v-abl, collaborate with constitutive myc expression to promote autonomous proliferation and tumorigenicity of pre-B lymphoid cells.


Blood ◽  
1990 ◽  
Vol 76 (5) ◽  
pp. 906-911 ◽  
Author(s):  
DE Williams ◽  
PJ Morrissey ◽  
DY Mochizuki ◽  
P de Vries ◽  
D Anderson ◽  
...  

T-cell growth factor P40 was examined for possible effects on murine interleukin-3 (IL-3)-dependent myeloid cell lines and freshly isolated murine bone marrow cells. The results showed that P40 stimulated the proliferation of some IL-3-dependent myeloid cell lines of both early myeloid and mast cell phenotype and synergized with IL-3. P40 did not promote proliferation of fresh bone marrow cells, bone marrow enriched for early myeloid cells by 5-fluorouracil treatment, or bone marrow derived mast cells as assessed in 3H-TdR incorporation assays. P40 did not influence the growth of murine colony-forming unit granulocyte- macrophage in agar cultures, either alone or in the presence of optimal or sub-optimal concentrations of CSF-1, GM-colony-stimulating factor, or IL-3. P40 did potentiate burst-forming unit-erythroid (BFU-E) formation in the presence of erythropoietin; however, this was dependent on the cell plating density, suggesting an indirect stimulation of BFU-E by P40. The indirect nature of P40 action on BFU-E was further demonstrated in cell separation experiments and indicated that the effect was mediated by T cells. These data expand the repertoire of cells that P40 influences.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2823-2829 ◽  
Author(s):  
Belen de Andres ◽  
Allan L. Mueller ◽  
Sjef Verbeek ◽  
Matyas Sandor ◽  
Richard G. Lynch

Abstract Early in development, murine B-lineage progenitor cells express two classes of IgG Fc receptors (FcγR) designated as FcγRII (CD32) and FcγRIII (CD16), but mature B lymphocytes only express FcγRII (CD32), which functions as an inhibitor of B-cell activation when it is induced to associate with mIgM. The functions of CD16 and CD32 on B-lineage precursor cells have not previously been investigated. To search for FcγR functions on developing B-lineage cells, normal murine bone marrow cells were cultured in the presence of 2.4G2, a rat monoclonal antibody that binds to CD16 and CD32, or in the presence of control normal rat IgG, and then the B-lineage compartment was analyzed for effects. Cultures that contained 2.4G2 showed enhanced growth and differentiation of B-lineage cells compared with control cultures. The enhancing effect of 2.4G2 also occurred when fluorescence-activated cell-sorted B-cell precursors (B220+, sIgM−, HSAhigh, FcγR+) from normal bone marrow were cocultured with BMS2, a bone marrow stromal cell line, but not when they were cultured in BMS2-conditioned media. The enhancement of B-lineage development induced by 2.4G2 was CD16-dependent and CD32-dependent, because 2.4G2 did not effect B-lineage growth or differentiation in cultures of bone marrow from mice in which either the gene encoding CD16 or CD32 had been disrupted. Analysis of fresh bone marrow from the CD16 gene-disrupted mice showed normal numbers and distribution of cells within the B-cell compartment, but in CD32 gene-disrupted mice, the B-cell compartment was significantly enlarged. These experiments provide several lines of evidence that the FcγR expressed on murine B-cell precursors can influence their growth and differentiation. © 1998 by The American Society of Hematology.


1989 ◽  
Vol 9 (1) ◽  
pp. 67-73
Author(s):  
W S Alexander ◽  
J M Adams ◽  
S Cory

Although transgenic mice bearing a c-myc gene controlled by the immunoglobulin heavy-chain enhancer (E mu) eventually develop B-lymphoid tumors, B-lineage cells from preneoplastic bone marrow express the transgene but do not grow autonomously or produce tumors in mice. To determine whether other oncogenes can cooperate with myc to transform B-lineage cells, we compared the in vitro growth and tumorigenicity of normal and E mu-myc bone marrow cells infected with retroviruses bearing the v-H-ras, v-raf, or v-abl oncogene. The v-H-ras and v-raf viruses both generated a rapid polyclonal expansion of E mu-myc pre-B bone marrow cells in liquid culture and 10- to 100-fold more pre-B lymphoid colonies than normal in soft agar. The infected transgenic cells were autonomous, cloned efficiently in agar, and grew as tumors in nude mice. While many pre-B cells from normal marrow could also be induced to proliferate by the v-raf virus, these cells required a stromal feeder layer, did not clone in agar, and were not malignant. Most normal cells stimulated to grow by v-H-ras also cloned poorly in agar, and only rare cells were tumorigenic. With the v-abl virus, no more cells were transformed from E mu-myc than normal marrow and the proportion of tumorigenic pre-B clones was not elevated. These results suggest that both v-H-ras and v-raf, but apparently not v-abl, collaborate with constitutive myc expression to promote autonomous proliferation and tumorigenicity of pre-B lymphoid cells.


Sign in / Sign up

Export Citation Format

Share Document