scholarly journals Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae.

1990 ◽  
Vol 10 (8) ◽  
pp. 4089-4099 ◽  
Author(s):  
R Padmanabha ◽  
J L Chen-Wu ◽  
D E Hanna ◽  
C V Glover

Casein kinase II of Saccharomyces cerevisiae contains two distinct catalytic subunits, alpha and alpha', which are encoded by the CKA1 and CKA2 genes, respectively. Null mutations in the CKA1 gene do not confer a detectable phenotype (J. L.-P. Chen-Wu, R. Padmanabha, and C. V. C. Glover, Mol. Cell. Biol. 8:4981-4990, 1988), presumably because of the presence of the CKA2 gene. We report here the cloning, sequencing, and disruption of the CKA2 gene. The alpha' subunit encoded by the CKA2 gene is 60% identical to the CKA1-encoded alpha subunit and 55% identical to the Drosophila alpha subunit (A. Saxena, R. Padmanabha, and C. V. C. Glover, Mol. Cell. Biol. 7:3409-3417, 1987). Deletions of the CKA2 gene were constructed by gene replacement techniques. Haploid cells in which the CKA2 gene alone is disrupted show no detectable phenotype, but haploid cells carrying disruptions in both the CKA1 and CKA2 genes are inviable. Cells in which casein kinase II activity is depleted increase substantially in size prior to growth arrest, and a significant fraction of the arrested cells exhibit a pseudomycelial morphology. Disruption of the activity also results in flocculation. Yeast strains lacking both endogenous catalytic subunit genes can be rescued by expression of the alpha and beta subunits of Drosophila casein kinase II or by expression of the Drosophila alpha subunit alone, suggesting that casein kinase II function has been conserved through evolution.

1990 ◽  
Vol 10 (8) ◽  
pp. 4089-4099 ◽  
Author(s):  
R Padmanabha ◽  
J L Chen-Wu ◽  
D E Hanna ◽  
C V Glover

Casein kinase II of Saccharomyces cerevisiae contains two distinct catalytic subunits, alpha and alpha', which are encoded by the CKA1 and CKA2 genes, respectively. Null mutations in the CKA1 gene do not confer a detectable phenotype (J. L.-P. Chen-Wu, R. Padmanabha, and C. V. C. Glover, Mol. Cell. Biol. 8:4981-4990, 1988), presumably because of the presence of the CKA2 gene. We report here the cloning, sequencing, and disruption of the CKA2 gene. The alpha' subunit encoded by the CKA2 gene is 60% identical to the CKA1-encoded alpha subunit and 55% identical to the Drosophila alpha subunit (A. Saxena, R. Padmanabha, and C. V. C. Glover, Mol. Cell. Biol. 7:3409-3417, 1987). Deletions of the CKA2 gene were constructed by gene replacement techniques. Haploid cells in which the CKA2 gene alone is disrupted show no detectable phenotype, but haploid cells carrying disruptions in both the CKA1 and CKA2 genes are inviable. Cells in which casein kinase II activity is depleted increase substantially in size prior to growth arrest, and a significant fraction of the arrested cells exhibit a pseudomycelial morphology. Disruption of the activity also results in flocculation. Yeast strains lacking both endogenous catalytic subunit genes can be rescued by expression of the alpha and beta subunits of Drosophila casein kinase II or by expression of the Drosophila alpha subunit alone, suggesting that casein kinase II function has been conserved through evolution.


1992 ◽  
Vol 12 (12) ◽  
pp. 5711-5723
Author(s):  
U Kikkawa ◽  
S K Mann ◽  
R A Firtel ◽  
T Hunter

A Dictyostelium discoideum cDNA encoding an alpha-type subunit of casein kinase II was isolated, and its cDNA was used to study developmental expression of casein kinase II during the Dictyostelium life cycle. The 1.3-kb cDNA insert contained an open reading frame of 337 amino acids (M(r) 39,900). The deduced amino acid sequence has high homology with those of casein kinase II alpha subunits from other species. Genomic Southern blot analysis suggested that there is a single gene encoding casein kinase II alpha subunit in D. discoideum. Northern (RNA) blot analysis showed that the casein kinase II alpha-subunit gene is expressed constitutively as a 1.9-kb mRNA throughout vegetative growth and multicellular development. Casein kinase purified from normal vegetative cells contained a major protein band of approximately 36 kDa, which was recognized by antisera raised against rat testis casein kinase II. Comparison of the in vitro transcription/translation product of the alpha-subunit cDNA clone and the purified 36-kDa protein by partial proteolysis indicated that the isolated cDNA clone encodes the Dictyostelium casein kinase II alpha subunit. No protein corresponding to a beta subunit was detected in purified casein kinase. Immunoblot analysis using anti-rat casein kinase II sera showed that the alpha subunit of casein kinase II is expressed constitutively like its mRNA during the life cycle of D. discoideum. Casein kinase II activity measured by using a specific peptide substrate paralleled the level of alpha subunit detected by immunoblotting during the life cycle, with a maximum variation of approximately 2-fold. We were unable to obtain disruptants of the casein kinase II alpha gene, suggesting that there is a single casein kinase II alpha gene, which is essential for vegetative growth of D. discoideum.


1995 ◽  
Vol 108 (2) ◽  
pp. 779-787 ◽  
Author(s):  
I. Vancurova ◽  
T.M. Paine ◽  
W. Lou ◽  
P.L. Paine

Nucleoplasmin is a phosphorylated nuclear-accumulating protein. We report herein that the kinetics of its cytoplasm-->nucleus transport are affected by its degree of phosphorylation. Therefore, we sought to identify any protein kinase which specifically associates with nucleoplasmin. We discovered that nucleoplasmin co-isolates by two independent methods (immunoabsorption and chromatography) in a complex including a kinase which phosphorylates nucleoplasmin. The co-purifying kinase is casein kinase II-like because: (i) it phosphorylates casein; (ii) its phospho-transferase activity can be competed out by GTP; (iii) it is stimulated by polylysine; and (iv) it is inhibited by heparin. Moreover, a polyclonal antibody to the alpha (38 kDa) and alpha' (36 kDa) catalytic subunits of casein kinase II specifically recognizes 38 and 36 kDa polypeptides in the nucleoplasmin-complex, and a specific inhibitor of casein kinase II inhibits nucleoplasmin's nuclear transport. Additionally, we found that phosphorylation of nucleoplasmin by its associated casein kinase II is strongly inhibited by histones and that, in addition to nucleoplasmin, another protein (p100) in the nucleoplasmin-complex is phosphorylated by casein kinase II.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3517-3523 ◽  
Author(s):  
CH Hoyt ◽  
CJ Oh ◽  
JB Beekman ◽  
DW Litchfield ◽  
KM Lerea

Abstract We have recently shown that inhibition of protein phosphatases in platelets causes increases in protein phosphorylations with a concomitant inhibition of platelet responses. The burst in protein phosphorylation appears to be catalyzed by messenger-independent protein kinases. The aim of the present study was to characterize the presence of broad families of protein kinases found in platelets. Lysates of control and thrombin-stimulated platelets were prepared, and proteins were separated on MONO Q fast protein liquid chromatography. In addition to the presence of histone protein kinase and tyrosine kinase activities, human platelets contain casein kinase II (CKII) activity as assessed by phosphorylation of a specific substrate peptide. Western blot analysis and immunogold electron microscopy studies further showed the presence of alpha-, alpha'-, and beta- subunits of CKII. The enzyme appears to be distributed throughout the cytosol and not secreted after thrombin treatment. Immunoprecipitation studies suggest that at least some of the holoenzymes exist as an alpha alpha' beta 2 complex. Although no activation of the enzyme was detected after thrombin treatment, our results show that CKII is a major messenger-independent protein kinase in platelets.


Biochemistry ◽  
1989 ◽  
Vol 28 (17) ◽  
pp. 7138-7138
Author(s):  
Herman Meisner ◽  
Robin Heller-Harrison ◽  
Joanne Buxton ◽  
Michael P. Czech

1988 ◽  
Vol 8 (11) ◽  
pp. 4981-4990
Author(s):  
J L Chen-Wu ◽  
R Padmanabha ◽  
C V Glover

Casein kinase II of Saccharomyces cerevisiae contains two distinct catalytic subunits, alpha and alpha', which must be encoded by separate genes (R. Padmanabha and C. V. C. Glover, J. Biol. Chem. 262:1829-1835, 1987). The gene encoding the 42-kilodalton alpha subunit has been isolated by screening a yeast genomic library with oligonucleotide probes synthesized on the basis of the N-terminal amino acid sequence of the polypeptide. This gene (designated CKA1) contains an intron-free open reading frame of 372 amino acid residues. The deduced amino acid sequence is 67% identical to the alpha subunit of Drosophila melanogaster casein kinase II. The CKA1 gene product appears to be distantly related to other known protein kinases but exhibits highest similarity to the CDC28 gene product and its homolog in other species. Gene replacement techniques have been used to generate a null cka1 mutant allele. Haploid and diploid strains lacking a functional CKA1 gene appear to be phenotypically wild type, presumably because of the presence of the alpha' gene. Interestingly, the CKA1 gene appears to be single copy in the yeast genome; i.e., the alpha' gene, whose existence is known from biochemical studies and protein sequencing, cannot be detected by low-stringency hybridization.


1992 ◽  
Vol 116 (1) ◽  
pp. 43-55 ◽  
Author(s):  
W Krek ◽  
G Maridor ◽  
E A Nigg

Casein kinase II (CK II) has been implicated in regulating multiple processes related to cell growth, proliferation, and differentiation. To better understand the function(s) and regulation of this ubiquitous kinase, it is important to know its subcellular distribution. However, this issue has been the subject of contradictory reports. In this study, we have used indirect immunofluorescence microscopy and cell fractionation to study the subcellular distribution of all three subunits of chicken CK II, alpha, alpha', and beta. We examined primary chick embryo fibroblasts, virally transformed chicken hepatoma cells, as well as HeLa cells transiently transfected with cDNAs encoding chicken CK II subunits. We found that each of the three CK II subunits was located predominantly in the cell nucleus, irrespective of the cell type analyzed or the procedure used for cell fixation. No major differences were detected in the subcellular distributions of individual CK II subunits, and no evidence was obtained for subunit redistributions during interphase of the cell cycle. During mitosis, the bulk of the enzyme was dispersed throughout the cell, though a fraction of all three subunits was associated with the mitotic spindle. Biochemical studies based on mechanical enucleation of chicken cells confirmed the predominantly nuclear location of all three CK II subunits. Finally, immunoblotting experiments were carried out to study the expression of CK II subunits. A survey of different adult chicken tissues revealed substantial tissue-specific differences in the levels of CK II protein, but no evidence was obtained for pronounced tissue specificity in the expression of individual CK II subunits. These results strongly suggest that CK II functions primarily in regulating nuclear activities, and that the two catalytic subunits, alpha and alpha', may carry out overlapping functions.


Sign in / Sign up

Export Citation Format

Share Document