scholarly journals Uniform cell-autonomous tumorigenesis of the choroid plexus by papovavirus large T antigens.

1991 ◽  
Vol 11 (12) ◽  
pp. 5968-5976 ◽  
Author(s):  
J D Chen ◽  
T Van Dyke

The simian virus 40 (SV40) large tumor antigen (T antigen) under its natural regulatory elements induces choroid plexus papillomas in transgenic mice. Because these tumors develop focally after several months, it has been suggested that secondary cellular alterations are required to induce a tumor in this tissue. In contrast to SV40, the related lymphotropic papovavirus early region induces rapid nonfocal choroid plexus neoplasia in transgenic mice. Here, using hybrid gene constructs, we showed that T antigen from either virus in in fact sufficient to induce these tumors. Their abilities to induce proliferative abnormalities in other tissues, such as kidney and thymus, were also indistinguishable. Differences in the rate of choroid plexus tumorigenesis reflected differences in the control regions of the two viruses, rather than differences in T antigen per se. Under SV40 regulation, expression was limited to a fraction of the choroid plexus cells prior to the formation of focal tumors. When SV40 T antigen was placed under lymphotropic papovavirus control, in contrast, expression was generally uniform in the choroid plexus and rapid expansion of the tissue ensued. We found a direct relationship between T-antigen expression, morphological transformation, and proliferation of the choroid plexus epithelial cells. Analysis of mosaic transgenic mice indicated further that T antigen exerts its mitogenic effect cell autonomously. These studies form the foundation for elucidating the role of various T-antigen subactivities in tumorigenesis.

1991 ◽  
Vol 11 (12) ◽  
pp. 5968-5976
Author(s):  
J D Chen ◽  
T Van Dyke

The simian virus 40 (SV40) large tumor antigen (T antigen) under its natural regulatory elements induces choroid plexus papillomas in transgenic mice. Because these tumors develop focally after several months, it has been suggested that secondary cellular alterations are required to induce a tumor in this tissue. In contrast to SV40, the related lymphotropic papovavirus early region induces rapid nonfocal choroid plexus neoplasia in transgenic mice. Here, using hybrid gene constructs, we showed that T antigen from either virus in in fact sufficient to induce these tumors. Their abilities to induce proliferative abnormalities in other tissues, such as kidney and thymus, were also indistinguishable. Differences in the rate of choroid plexus tumorigenesis reflected differences in the control regions of the two viruses, rather than differences in T antigen per se. Under SV40 regulation, expression was limited to a fraction of the choroid plexus cells prior to the formation of focal tumors. When SV40 T antigen was placed under lymphotropic papovavirus control, in contrast, expression was generally uniform in the choroid plexus and rapid expansion of the tissue ensued. We found a direct relationship between T-antigen expression, morphological transformation, and proliferation of the choroid plexus epithelial cells. Analysis of mosaic transgenic mice indicated further that T antigen exerts its mitogenic effect cell autonomously. These studies form the foundation for elucidating the role of various T-antigen subactivities in tumorigenesis.


1993 ◽  
Vol 13 (6) ◽  
pp. 3255-3265
Author(s):  
H S Symonds ◽  
S A McCarthy ◽  
J Chen ◽  
J M Pipas ◽  
T Van Dyke

We have used the multifunctional transforming protein, simian virus 40 T antigen, as a probe to study the mechanisms of cell growth regulation in the intact organism. T antigen appears to perturb cell growth, at least in part, by stably interacting with specific cellular proteins that function to maintain normal cell growth properties. Experiments in cultured cells indicate that at least three distinct regions of simian virus 40 T antigen have roles in transformation. Two regions correlate with the binding of known cellular proteins, p53, pRB, and p107. A third activity, located near the amino terminus, has been defined genetically but not biochemically. By targeting expression of wild-type and mutant forms of T antigen to distinct cell types in transgenic mice, we have begun to systematically determine which activities play a role in tumorigenesis of each cell type. In this study, we sought to determine the role of the amino-terminal transformation function with such an analysis of the T-antigen mutant dl1135. This protein, which lacks amino acids 17 to 27, retains the p53-, pRB-, and p107-binding activities yet fails to transform cells in culture. To direct expression in transgenic mice, we used the lymphotropic papovavirus transcriptional signals that are specific for B and T lymphocytes and the choroid plexus epithelium of the brain. We show here that although defective in cell culture, dl1135 specifically induced the development of thymic lymphomas in the mouse. Expression of the protein was routinely observed in B- and T-lymphoid cells, although B-cell abnormalities were not observed. Choroid plexus tumors were observed only infrequently; however, dl1135 was not consistently expressed in this tissue. Within a given transgenic line, the penetrance of T-cell tumorigenesis was 100% but appeared to require secondary events, as judged from the clonal nature of the tumors. These experiments suggest that the amino-terminal region of T antigen has a role in the transformation of certain cell types (such as fibroblasts in culture and B lymphocytes) but is dispensable for the transformation of T lymphocytes.


1993 ◽  
Vol 13 (6) ◽  
pp. 3255-3265 ◽  
Author(s):  
H S Symonds ◽  
S A McCarthy ◽  
J Chen ◽  
J M Pipas ◽  
T Van Dyke

We have used the multifunctional transforming protein, simian virus 40 T antigen, as a probe to study the mechanisms of cell growth regulation in the intact organism. T antigen appears to perturb cell growth, at least in part, by stably interacting with specific cellular proteins that function to maintain normal cell growth properties. Experiments in cultured cells indicate that at least three distinct regions of simian virus 40 T antigen have roles in transformation. Two regions correlate with the binding of known cellular proteins, p53, pRB, and p107. A third activity, located near the amino terminus, has been defined genetically but not biochemically. By targeting expression of wild-type and mutant forms of T antigen to distinct cell types in transgenic mice, we have begun to systematically determine which activities play a role in tumorigenesis of each cell type. In this study, we sought to determine the role of the amino-terminal transformation function with such an analysis of the T-antigen mutant dl1135. This protein, which lacks amino acids 17 to 27, retains the p53-, pRB-, and p107-binding activities yet fails to transform cells in culture. To direct expression in transgenic mice, we used the lymphotropic papovavirus transcriptional signals that are specific for B and T lymphocytes and the choroid plexus epithelium of the brain. We show here that although defective in cell culture, dl1135 specifically induced the development of thymic lymphomas in the mouse. Expression of the protein was routinely observed in B- and T-lymphoid cells, although B-cell abnormalities were not observed. Choroid plexus tumors were observed only infrequently; however, dl1135 was not consistently expressed in this tissue. Within a given transgenic line, the penetrance of T-cell tumorigenesis was 100% but appeared to require secondary events, as judged from the clonal nature of the tumors. These experiments suggest that the amino-terminal region of T antigen has a role in the transformation of certain cell types (such as fibroblasts in culture and B lymphocytes) but is dispensable for the transformation of T lymphocytes.


1994 ◽  
Vol 14 (10) ◽  
pp. 6743-6754 ◽  
Author(s):  
L Fromm ◽  
W Shawlot ◽  
K Gunning ◽  
J S Butel ◽  
P A Overbeek

Regulation of the cell cycle is a critical aspect of cellular proliferation, differentiation, and transformation. In many cell types, the differentiation process is accompanied by a loss of proliferative capability, so that terminally differentiated cells become postmitotic and no longer progress through the cell cycle. In the experiments described here, the ocular lens has been used as a system to examine the role of the retinoblastoma protein (pRb) family in regulation of the cell cycle during differentiation. The ocular lens is an ideal system for such studies, since it is composed of just two cell types: epithelial cells, which are capable of proliferation, and fiber cells, which are postmitotic. In order to inactivate pRb in viable mice, genes encoding either a truncated version of simian virus 40 large T antigen or the E7 protein of human papillomavirus were expressed in a lens-specific fashion in transgenic mice. Lens fiber cells in the transgenic mice were found to incorporate bromodeoxyuridine, implying inappropriate entry into the cell cycle. Surprisingly, the lens fiber cells did not proliferate as tumor cells but instead underwent programmed cell death, resulting in lens ablation and microphthalmia. Analogous lens alterations did not occur in mice expressing a modified version of the truncated T antigen that was mutated in the binding domain for the pRb family. These experimental results indicate that the retinoblastoma protein family plays a crucial role in blocking cell cycle progression and maintaining terminal differentiation in lens fiber cells. Apoptotic cell death ensues when fiber cells are induced to remain in or reenter the cell cycle.


Virology ◽  
1992 ◽  
Vol 190 (1) ◽  
pp. 459-464 ◽  
Author(s):  
Satvir S. Tevethia ◽  
Melanie Epler ◽  
Ingo Georgoff ◽  
Angie Teresky ◽  
Marty Marlow ◽  
...  

2000 ◽  
Vol 20 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Mikel Valle ◽  
Claudia Gruss ◽  
Lothar Halmer ◽  
José M. Carazo ◽  
Luis Enrique Donate

ABSTRACTThe initial step of simian virus 40 (SV40) DNA replication is the binding of the large tumor antigen (T-Ag) to the SV40 core origin. In the presence of Mg2+and ATP, T-Ag forms a double-hexamer complex covering the complete core origin. By using electron microscopy and negative staining, we visualized for the first time T-Ag double hexamers bound to the SV40 origin. Image processing of side views of these nucleoprotein complexes revealed bilobed particles 24 nm long and 8 to 12 nm wide, which indicates that the two T-Ag hexamers are oriented head to head. Taking into account all of the biochemical data known on the T-Ag–DNA interactions at the replication origin, we present a model in which the DNA passes through the inner channel of both hexamers. In addition, we describe a previously undetected structural domain of the T-Ag hexamer and thereby amend the previously published dimensions of the T-Ag hexamer. This domain we have determined to be the DNA-binding domain of T-Ag.


Sign in / Sign up

Export Citation Format

Share Document