scholarly journals Repair of specific base pair mismatches formed during meiotic recombination in the yeast Saccharomyces cerevisiae

1991 ◽  
Vol 11 (2) ◽  
pp. 737-745
Author(s):  
P Detloff ◽  
J Sieber ◽  
T D Petes

Heteroduplexes formed between DNA strands derived from different homologous chromosomes are an intermediate in meiotic crossing over in the yeast Saccharomyces cerevisiae and other eucaryotes. A heteroduplex formed between wild-type and mutant genes will contain a base pair mismatch; failure to repair this mismatch will lead to postmeiotic segregation (PMS). By analyzing the frequency of PMS for various mutant alleles in the yeast HIS4 gene, we showed that C/C mismatches were inefficiently repaired relative to all other point mismatches. These other mismatches (G/G, G/A, T/T, A/A, T/C, C/A, A/A, and T/G) were repaired with approximately the same efficiency. We found that in spores with unrepaired mismatches in heteroduplexes, the nontranscribed strand of the HIS4 gene was more frequently donated than the transcribed strand. In addition, the direction of repair for certain mismatches was nonrandom.

1991 ◽  
Vol 11 (2) ◽  
pp. 737-745 ◽  
Author(s):  
P Detloff ◽  
J Sieber ◽  
T D Petes

Heteroduplexes formed between DNA strands derived from different homologous chromosomes are an intermediate in meiotic crossing over in the yeast Saccharomyces cerevisiae and other eucaryotes. A heteroduplex formed between wild-type and mutant genes will contain a base pair mismatch; failure to repair this mismatch will lead to postmeiotic segregation (PMS). By analyzing the frequency of PMS for various mutant alleles in the yeast HIS4 gene, we showed that C/C mismatches were inefficiently repaired relative to all other point mismatches. These other mismatches (G/G, G/A, T/T, A/A, T/C, C/A, A/A, and T/G) were repaired with approximately the same efficiency. We found that in spores with unrepaired mismatches in heteroduplexes, the nontranscribed strand of the HIS4 gene was more frequently donated than the transcribed strand. In addition, the direction of repair for certain mismatches was nonrandom.


Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 535-542 ◽  
Author(s):  
B A Kunz ◽  
M G Peters ◽  
S E Kohalmi ◽  
J D Armstrong ◽  
M Glattke ◽  
...  

Abstract Defects in the RAD52 gene of the yeast Saccharomyces cerevisiae confer a mutator phenotype. To characterize this effect in detail, a collection of 238 spontaneous SUP4-o mutations arising in a strain having a disrupted RAD52 gene was analyzed by DNA sequencing. The resulting mutational spectrum was compared to that derived from an examination of 222 spontaneous mutations selected in a nearisogenic wild-type (RAD52) strain. This comparison revealed that the mutator phenotype was associated with an increase in the frequency of base-pair substitutions. All possible types of substitution were detected but there was a reduction in the relative fraction of A.T----G.C transitions and an increase in the proportion of G.C----C.G transversions. These changes were sufficient to cause a twofold greater preference for substitutions at G.C sites in the rad52 strain despite a decrease in the fraction of G.C----T.A transversions. There were also considerable differences between the distributions of substitutions within the SUP4-o gene. Base-pair changes occurred at fewer sites in the rad52 strain but the mutated sites included several that were not detected in the RAD52 background. Only two of the four sites that were mutated most frequently in the rad52 strain were also prominent in the wild-type strain and mutation frequencies at almost all sites common to both strains were greater for the rad52 derivative. Although single base-pair deletions occurred in the two strains with similar frequencies, several classes of mutation that were recovered in the wild-type background including multiple base-pair deletions, insertions of the yeast transposable element Ty, and more complex changes, were not detected in the rad52 strain.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 12 (4) ◽  
pp. 1805-1814
Author(s):  
P Detloff ◽  
T D Petes

During meiotic recombination in the yeast Saccharomyces cerevisiae, heteroduplexes are formed at a high frequency between HIS4 genes located on homologous chromosomes. Using mutant alleles of the HIS4 gene that result in poorly repaired mismatches in heteroduplex DNA, we find that heteroduplexes often span a distance of 1.8 kb. In addition, we show that about one-third of the repair tracts initiated at well-repaired mismatches extend 900 bp.


1992 ◽  
Vol 12 (4) ◽  
pp. 1805-1814 ◽  
Author(s):  
P Detloff ◽  
T D Petes

During meiotic recombination in the yeast Saccharomyces cerevisiae, heteroduplexes are formed at a high frequency between HIS4 genes located on homologous chromosomes. Using mutant alleles of the HIS4 gene that result in poorly repaired mismatches in heteroduplex DNA, we find that heteroduplexes often span a distance of 1.8 kb. In addition, we show that about one-third of the repair tracts initiated at well-repaired mismatches extend 900 bp.


1990 ◽  
Vol 10 (6) ◽  
pp. 2809-2819
Author(s):  
M J Malavasic ◽  
R T Elder

The SPO12 gene, which is required for meiosis I chromosome division during sporulation of the yeast Saccharomyces cerevisiae, has been isolated. DNA sequencing has identified an open reading frame of 173 codons that encodes the putative SPO12 protein and has no significant sequence similarities to known genes. The last 15 amino acids of this putative protein have a high negative charge, which appears to be required for function. A second sporulation-specific gene, designated SPO16, was found adjacent to SPO12 and shown to be necessary for efficient spore formation. The two genes are encoded on opposite DNA strands with only 103 nucleotides between the termination codons. Up to 700 nucleotides of the SPO12 and SPO16 transcripts are complementary, and the 3' untranslated region of the longest SPO16 transcript is complementary to all or nearly all of the SPO12 mRNA. A strain homozygous for an insertion which removes the complementarity between the SPO12 and SPO16 mRNAs has an efficiency of sporulation, number of spores per ascus, and spore viability identical to those of a wild-type strain. The complementarity therefore has either no function or only a subtle function in meiosis and sporulation.


1990 ◽  
Vol 10 (6) ◽  
pp. 2809-2819 ◽  
Author(s):  
M J Malavasic ◽  
R T Elder

The SPO12 gene, which is required for meiosis I chromosome division during sporulation of the yeast Saccharomyces cerevisiae, has been isolated. DNA sequencing has identified an open reading frame of 173 codons that encodes the putative SPO12 protein and has no significant sequence similarities to known genes. The last 15 amino acids of this putative protein have a high negative charge, which appears to be required for function. A second sporulation-specific gene, designated SPO16, was found adjacent to SPO12 and shown to be necessary for efficient spore formation. The two genes are encoded on opposite DNA strands with only 103 nucleotides between the termination codons. Up to 700 nucleotides of the SPO12 and SPO16 transcripts are complementary, and the 3' untranslated region of the longest SPO16 transcript is complementary to all or nearly all of the SPO12 mRNA. A strain homozygous for an insertion which removes the complementarity between the SPO12 and SPO16 mRNAs has an efficiency of sporulation, number of spores per ascus, and spore viability identical to those of a wild-type strain. The complementarity therefore has either no function or only a subtle function in meiosis and sporulation.


Genetics ◽  
1994 ◽  
Vol 137 (1) ◽  
pp. 19-39 ◽  
Author(s):  
E Alani ◽  
R A Reenan ◽  
R D Kolodner

Abstract The yeast Saccharomyces cerevisiae encodes a set of genes that show strong amino acid sequence similarity to MutS and MutL, proteins required for mismatch repair in Escherichia coli. We examined the role of MSH2 and PMS1, yeast homologs of mutS and mutL, respectively, in the repair of base pair mismatches formed during meiotic recombination. By using specifically marked HIS4 and ARG4 alleles, we showed that msh2 mutants displayed a severe defect in the repair of all base pair mismatches as well as 1-, 2- and 4-bp insertion/deletion mispairs. The msh2 and pms1 phenotypes were indistinguishable, suggesting that the wild-type gene products act in the same repair pathway. A comparison of gene conversion events in wild-type and msh2 mutants indicated that mismatch repair plays an important role in genetic recombination. (1) Tetrad analysis at five different loci revealed that, in msh2 mutants, the majority of aberrant segregants displayed a sectored phenotype, consistent with a failure to repair mismatches created during heteroduplex formation. In wild type, base pair mismatches were almost exclusively repaired toward conversion rather than restoration. (2) In msh2 strains 10-19% of the aberrant tetrads were Ab4:4. (3) Polarity gradients at HIS4 and ARG4 were nearly abolished in msh2 mutants. The frequency of gene conversion at the 3' end of these genes was increased and was nearly the frequency observed at the 5' end. (4) Co-conversion studies were consistent with mismatch repair acting to regulate heteroduplex DNA tract length. We favor a model proposing that recombination events occur through the formation and resolution of heteroduplex intermediates and that mismatch repair proteins specifically interact with recombination enzymes to regulate the length of symmetric heteroduplex DNA.


Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 81-95 ◽  
Author(s):  
E J Louis ◽  
J E Haber

Abstract The presence of the tRNA ochre suppressors SUP11 and SUP5 is found to induce meiosis I nondisjunction in the yeast Saccharomyces cerevisiae. The induction increases with increasing dosage of the suppressor and decreases in the presence of an antisuppressor. The effect is independent of the chromosomal location of SUP11. Each of five different chromosomes monitored exhibited nondisjunction at frequencies of 0.1%-1.1% of random spores, which is a 16-160-fold increase over wild-type levels. Increased nondisjunction is reflected by a marked increase in tetrads with two and zero viable spores. In the case of chromosome III, for which a 50-cM map interval was monitored, the resulting disomes are all in the parental nonrecombinant configuration. Recombination along chromosome III appears normal both in meioses that have no nondisjunction and in meioses for which there was nondisjunction of another chromosome. We propose that a proportion of one or more proteins involved in chromosome pairing, recombination or segregation are aberrant due to translational read-through of the normal ochre stop codon. Hygromycin B, an antibiotic that can suppress nonsense mutations via translational read-through, also induces nonrecombinant meiosis I nondisjunction. Increases in mistranslation, therefore, increase the production of aneuploids during meiosis. There was no observable effect of SUP11 on mitotic chromosome nondisjunction; however some disomes caused SUP11 ade2-ochre strains to appear white or red, instead of pink.


Genetics ◽  
1997 ◽  
Vol 145 (3) ◽  
pp. 661-670 ◽  
Author(s):  
Qing-Qing Fan ◽  
Fei Xu ◽  
Michael A White ◽  
Thomas D Petes

In a wild-type strain of Saccharomyces cerevisiae, a hotspot for meiotic recombination is located upstream of the HIS4 gene. An insertion of a 49-bp telomeric sequence into the coding region of HIS4 strongly stimulates meiotic recombination and the local formation of meiosis-specific double-strand DNA breaks (DSBs). When strains are constructed in which both hotspots are heterozygous, hotspot activity is substantially less when the hotspots are on the same chromosome than when they are on opposite chromosomes.


2002 ◽  
Vol 22 (20) ◽  
pp. 6946-6948 ◽  
Author(s):  
Joanna Kamińska ◽  
Beata Gajewska ◽  
Anita K. Hopper ◽  
Teresa ˙Zołądek

ABSTRACT Rsp5p is an ubiquitin-protein ligase of Saccharomyces cerevisiae that has been implicated in numerous processes including transcription, mitochondrial inheritance, and endocytosis. Rsp5p functions at multiple steps of endocytosis, including ubiquitination of substrates and other undefined steps. We propose that one of the roles of Rsp5p in endocytosis involves maintenance and remodeling of the actin cytoskeleton. We report the following. (i) There are genetic interactions between rsp5 and several mutant genes encoding actin cytoskeletal proteins. rsp5 arp2, rsp5 end3, and rsp5 sla2 double mutants all show synthetic growth defects. Overexpressed wild-type RSP5 or mutant rsp5 genes with lesions of some WW domains suppress growth defects of arp2 and end3 cells. The defects in endocytosis, actin cytoskeleton, and morphology of arp2 are also suppressed. (ii) Rsp5p and Sla2p colocalize in abnormal F-actin-containing clumps in arp2 and pan1 mutants. Immunoprecipitation experiments confirmed that Rsp5p and Act1p colocalize in pan1 mutants. (iii) Rsp5p and Sla2p coimmunoprecipitate and partially colocalize to punctate structures in wild-type cells. These studies provide the first evidence for an interaction of an actin cytoskeleton protein with Rsp5p. (iv) rsp5-w1 mutants are resistant to latrunculin A, a drug that sequesters actin monomers and depolymerizes actin filaments, consistent with the fact that Rsp5p is involved in actin cytoskeleton dynamics.


Sign in / Sign up

Export Citation Format

Share Document