cis-acting sequences required for inducible interleukin-2 enhancer function bind a novel Ets-related protein, Elf-1

1992 ◽  
Vol 12 (3) ◽  
pp. 1043-1053
Author(s):  
C B Thompson ◽  
C Y Wang ◽  
I C Ho ◽  
P R Bohjanen ◽  
B Petryniak ◽  
...  

The recent definition of a consensus DNA binding sequence for the Ets family of transcription factors has allowed the identification of potential Ets binding sites in the promoters and enhancers of many inducible T-cell genes. In the studies described in this report, we have identified two potential Ets binding sites, EBS1 and EBS2, which are conserved in both the human and murine interleukin-2 enhancers. Within the human enhancer, these two sites are located within the previously defined DNase I footprints, NFAT-1 and NFIL-2B, respectively. Electrophoretic mobility shift and methylation interference analyses demonstrated that EBS1 and EBS2 are essential for the formation of the NFAT-1 and NFIL-2B nuclear protein complexes. Furthermore, in vitro mutagenesis experiments demonstrated that inducible interleukin-2 enhancer function requires the presence of either EBS1 or EBS2. Two well-characterized Ets family members, Ets-1 and Ets-2, are reciprocally expressed during T-cell activation. Surprisingly, however, neither of these proteins bound in vitro to EBS1 or EBS2. We therefore screened a T-cell cDNA library under low-stringency conditions with a probe from the DNA binding domain of Ets-1 and isolated a novel Ets family member, Elf-1. Elf-1 contains a DNA binding domain that is nearly identical to that of E74, the ecdysone-inducible Drosophila transcription factor required for metamorphosis (hence the name Elf-1, for E74-like factor 1). Elf-1 bound specifically to both EBS1 and EBS2 in electrophoretic mobility shift assays. It also bound to the purine-rich CD3R element from the human immunodeficiency virus type 2 long terminal repeat, which is required for inducible virus expression in response to signalling through the T-cell receptor. Taken together, these results demonstrate that multiple Ets family members with apparently distinct DNA binding specificities regulate differential gene expression in resting and activated T cells.

1992 ◽  
Vol 12 (3) ◽  
pp. 1043-1053 ◽  
Author(s):  
C B Thompson ◽  
C Y Wang ◽  
I C Ho ◽  
P R Bohjanen ◽  
B Petryniak ◽  
...  

The recent definition of a consensus DNA binding sequence for the Ets family of transcription factors has allowed the identification of potential Ets binding sites in the promoters and enhancers of many inducible T-cell genes. In the studies described in this report, we have identified two potential Ets binding sites, EBS1 and EBS2, which are conserved in both the human and murine interleukin-2 enhancers. Within the human enhancer, these two sites are located within the previously defined DNase I footprints, NFAT-1 and NFIL-2B, respectively. Electrophoretic mobility shift and methylation interference analyses demonstrated that EBS1 and EBS2 are essential for the formation of the NFAT-1 and NFIL-2B nuclear protein complexes. Furthermore, in vitro mutagenesis experiments demonstrated that inducible interleukin-2 enhancer function requires the presence of either EBS1 or EBS2. Two well-characterized Ets family members, Ets-1 and Ets-2, are reciprocally expressed during T-cell activation. Surprisingly, however, neither of these proteins bound in vitro to EBS1 or EBS2. We therefore screened a T-cell cDNA library under low-stringency conditions with a probe from the DNA binding domain of Ets-1 and isolated a novel Ets family member, Elf-1. Elf-1 contains a DNA binding domain that is nearly identical to that of E74, the ecdysone-inducible Drosophila transcription factor required for metamorphosis (hence the name Elf-1, for E74-like factor 1). Elf-1 bound specifically to both EBS1 and EBS2 in electrophoretic mobility shift assays. It also bound to the purine-rich CD3R element from the human immunodeficiency virus type 2 long terminal repeat, which is required for inducible virus expression in response to signalling through the T-cell receptor. Taken together, these results demonstrate that multiple Ets family members with apparently distinct DNA binding specificities regulate differential gene expression in resting and activated T cells.


1992 ◽  
Vol 175 (5) ◽  
pp. 1391-1399 ◽  
Author(s):  
C Y Wang ◽  
B Petryniak ◽  
I C Ho ◽  
C B Thompson ◽  
J M Leiden

Members of the Ets family of proto-oncogenes encode sequence-specific transcription factors that bind to a purine-rich motif centered around a conserved GGA trinucleotide. Ets binding sites have been identified in the transcriptional regulatory regions of multiple T cell genes including the T cell receptor alpha and beta (TCR-alpha and -beta) enhancers and the IL-2 enhancer, as well as in the enhancers of several T cell-trophic viruses including Maloney sarcoma virus, human leukemia virus type 1, and human immunodeficiency virus-2. T cells express multiple members of the Ets gene family including Ets-1, Ets-2, GABP alpha, Elf-1, and Fli-1. The different patterns of expression and protein-protein interactions of these different Ets family members undoubtedly contribute to their ability to specifically regulate distinct sets of T cell genes. However, previous studies have suggested that different Ets family members might also display distinct DNA binding specificities. In this report, we have examined the DNA binding characteristics of two Ets family members, Ets-1 and Elf-1, that are highly expressed in T cells. The results demonstrate that the minimal DNA binding domain of these proteins consists of adjacent basic and putative alpha-helical regions that are conserved in all of the known Ets family members. Both regions are required for DNA binding activity. In vitro binding studies demonstrated that Ets-1 and Elf-1 display distinct DNA binding specificities, and, thereby interact preferentially with different naturally occurring Ets binding sites. A comparison of known Ets binding sites identified three nucleotides at the 3' end of these sequences that control the differential binding of the Ets-1 and Elf-1 proteins. These results are consistent with a model in which different Ets family members regulate the expression of different T cell genes by binding preferentially to purine-rich sequences that share a GGA core motif, but contain distinct flanking sequences.


2006 ◽  
Vol 26 (7) ◽  
pp. 2467-2478 ◽  
Author(s):  
Sungeun Kim ◽  
Christopher T. Denny ◽  
Ron Wisdom

ABSTRACT A key molecular event in the genesis of Ewing's sarcoma is the consistent presence of chromosomal translocations that result in the formation of proteins in which the amino terminus of EWS is fused to the carboxyl terminus, including the DNA binding domain, of one of five different Ets family proteins. These fusion proteins function as deregulated transcription factors, resulting in aberrant control of gene expression. Recent data indicate that some EWS-Ets target promoters, including the uridine phosphorylase (UPP) promoter, harbor tandem binding sites for Ets and AP-1 proteins. Here we show that those Ets family proteins that participate in Ewing's sarcoma, including Fli1, ERG, and ETV1, cooperatively bind these tandem elements with Fos-Jun while other Ets family members do not. Analysis of this cooperativity in vitro shows that (i) many different spatial arrangements of the Ets and AP-1 sites support cooperative binding, (ii) the bZIP motifs of Fos and Jun are sufficient to support this cooperativity, and (iii) both the Ets domain and carboxy-terminal sequences of Fli1 are important for cooperative DNA binding. EWS-Fli1 activates the expression of UPP mRNA, is directly bound to the UPP promoter, and transforms 3T3 fibroblasts; in contrast, a C-terminally truncated mutant form of EWS-Fli1 that cannot cooperatively bind DNA with Fos-Jun is defective in all of these properties. The results show that the ability of EWS-Ets proteins to cooperatively bind DNA with Fos-Jun is critical to the biologic activities of these proteins. The results have implications for understanding the pathogenesis of Ewing's sarcoma. In addition, they may be relevant to the mechanisms of Ras-dependent activation of genes that harbor tandem Ets and AP-1 binding sites.


2020 ◽  
Author(s):  
Ken-ichi Yoshida ◽  
Yusuke Shirae ◽  
Ryo Nishimura ◽  
Kaho Fukui ◽  
Shu Ishikawa

Abstract BackgroundGeobacillus kaustophilus HTA426, a thermophilic Gram-positive bacterium, grows on inositol as its sole carbon source, and an iol gene cluster required for inositol catabolism has been postulated with reference to the iol genes in Bacillus subtilis. The iol gene cluster consists of two tandem operons induced in the presence of inositol; however, the mechanism underlying the induction remains unclear. B. subtilis iolQ is known to be involved in the regulation of iolX encoding a scyllo-inositol dehydrogenase, and its homolog in HTA426 was found two genes upstream of the first gene (gk1899) of the iol gene cluster and termed as iolQ in G. kaustophilus.ResultsWhen iolQ was inactivated, not only the myo-inositol dehydrogenase activity in the cell due to the expression of gk1899 but also the transcription of the two iol operons became constitutive. IolQ was produced and purified as a C-terminal His-tag fusion in Escherichia coli and subjected to the in vitro gel mobility shift assay to examine its DNA binding property. It was observed that IolQ bound to the DNA fragments containing each of the two iol promoter regions, and its DNA binding was antagonized by myo-inositol. Moreover, DNase I footprint analyses were conducted to determine the two binding sites of IolQ within each of the iol promoter regions. By comparing the sequences of the binding sites, a consensus sequence for IolQ binding was deduced to be a palindrome of 5′-RGWAAGCGCTTSCY-3′ (where R = A or G, W = A or T, S = G or C, and Y = C or T).ConclusionIolQ functions as a transcriptional repressor regulating the induction of the two iol operons responding to myo-inositol.


1993 ◽  
Vol 178 (3) ◽  
pp. 941-949 ◽  
Author(s):  
D B Landry ◽  
J D Engel ◽  
R Sen

Genes encoding the accessory molecules CD8 and CD4 are activated early in thymocyte development, generating CD4+8+ double positive intermediates, which give rise to two functionally distinct mature T cell subsets that express either CD4 or CD8. The mechanisms that govern the activation or suppression of the CD8 gene are likely to be central to the T cell development program. To identify the key regulatory factors, we have initiated an analysis of the transcriptional regulation of the murine CD8 alpha gene. We have identified three CD8+ cell-specific DNAase I hypersensitive sites (HSS) located upstream of the murine CD8 alpha gene. In vitro mobility shift analysis of the -4.0-kb HSS region has revealed multiple binding sites for the T cell-restricted transcription factor GATA-3. In vitro translated murine GATA-3 binds specifically to both CD8 GATA sites, and coexpression of this factor in transient transfection assays transactivates a reporter construct containing these sequences. These results provide the first evidence for the role of a T cell-restricted factor in the regulation of either CD8 or CD4 genes.


1999 ◽  
Vol 67 (4) ◽  
pp. 1894-1900
Author(s):  
Wahib Mahana

ABSTRACT Staphylococal enterotoxins (SE) bind with high affinity to major histocompatibility complex (MHC) class II proteins and stimulate large number of T cells via the Vβ region of the T-cell receptor (TCR). To map the epitopes of SE type A (SEA) involved in MHC binding and cell proliferation, 20 specific anti-SEA monoclonal antibodies (MAbs) and two large glutathione S-transferase fusion proteins corresponding to the amino and carboxy termini, respectively, of SEA were used. The functionality of these antibodies was tested, by MHC binding inhibition, interleukin-2 production, and T-cell proliferation assays. Moreover, I studied the ability of the MAbs to present SEA in vitro to human and murine cells and their reactivity with the two fusion proteins. This study showed that all of the MAbs have a defined effect on one or both immunological properties of SEA and were able to present SEA to human and murine cells. However, one MAb (4H8) recognized SEA but without any interference with its biological activities. When the MAbs were tested to react with the two fusion proteins representing the SEA molecule, all of the MAbs were negative except for two. These results confirmed the presence of two functionally different binding sites of SEA with MHC class II molecules and the importance of the disulfide loop for the mitogenic activity of SEA. I further demonstrated that MAbs can present SEA to immune cells independent of the site recognized by the antibody and that the integrity of the SEA molecule is very important for its functions.


1996 ◽  
Vol 16 (8) ◽  
pp. 4024-4034 ◽  
Author(s):  
P A Zweidler-Mckay ◽  
H L Grimes ◽  
M M Flubacher ◽  
P N Tsichlis

The Gfi-1 proto-oncogene encodes a zinc finger protein with six C2H2-type, C-terminal zinc finger motifs and is activated by provirus integration in T-cell lymphoma lines selected for interleukin-2 independence in culture and in primary retrovirus-induced thymomas. Gfi-1 expression in adult animals is restricted to the thymus, spleen, and testis and is enhanced in mitogen-stimulated splenocytes. In this report, we show that Gfi-1 is a 55-kDa nuclear protein that binds DNA in a sequence-specific manner. The Gfi-1 binding site, TAAATCAC(A/T)GCA, was defined via random oligonucleotide selection utilizing a bacterially expressed glutathione S-transferase-Gfi-1 fusion protein. Binding to this site was confirmed by electrophoretic mobility shift assays and DNase I footprinting. Methylation interference analysis and electrophoretic mobility shift assays with mutant oliginucleotides defined the relative importance of specific bases at the consensus binding site. Deletion of individual zinc fingers demonstrated that only zinc fingers 3, 4, and 5 are required for sequence-specific DNA binding. Potential Gfi-1 binding sites were detected in a large number of eukaryotic promoter-enhancers, including the enhancers of several proto-oncogenes and cytokine genes and the enhancer of the human cytomegalovirus (HCMV) major immediate-early promoter, which contains two such sites. HCMV major immediate-early-chloramphenicol acetyltransferase reporter constructs, transfected into NIH 3T3 fibroblasts, were repressed by Gfi-1, and the repression was abrogated by mutation of critical residues in the two Gfi-1 binding sites. These results suggest that Gfi-1 may play a role in HCMV biology and may contribute to oncogenesis and T-cell activation by repressing the expression of genes that inhibit these processes.


1988 ◽  
Vol 8 (4) ◽  
pp. 1625-1637 ◽  
Author(s):  
A Thornell ◽  
B Hallberg ◽  
T Grundström

An electrophoretic mobility shift assay was used to characterize interactions of nuclear proteins with a DNA segment in the enhancer element of the leukemogenic murine retrovirus SL3-3. Mutation of a DNA sequence of the 5'-TGTGG-3' type decreased transcription in vivo specifically in T-lymphocyte cell lines. Extracts of nuclei from different T-lymphocyte cell lines or cells from lymphoid organs resulted in much higher amounts of complexes in vitro with this DNA sequence than did extracts from other cell lines or organs tested. Differences were also found in the sets of complexes obtained with extracts from the different types of cells. The DNA sequence specificities of the different SL3-3 enhancer factor 1 (SEF1) protein complexes were found to be distinct from those of several other previously identified DNA motifs of the TGTGG type because of differences in several nucleotides critical for binding and because these other DNA motifs could not compete with the identified DNA sequence for binding of SEF1. Limited treatment with several different proteases cleaved the SEF1 proteins such that their DNA-binding domain(s) remained and created complexes with decreased and nondistinguishable electrophoretic mobility shifts and with new properties. These results indicate that the SEF1 proteins have a structure with a flexible and relatively vulnerable hinge region linking a DNA-binding domain(s) to a more variable domain(s) with other functions. We suggest that the binding of SEF1 is an essential factor for the T-cell tropism of SL3-3 and the ability of this virus to cause T-cell lymphomas.


Biology Open ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. bio054692
Author(s):  
Amy K. Wehn ◽  
Deborah R. Farkas ◽  
Carly E. Sedlock ◽  
Dibya Subedi ◽  
Deborah L. Chapman

ABSTRACTThe mouse T-box transcription factors T and Tbx6 are co-expressed in the primitive streak and have unique domains of expression; T is expressed in the notochord, while Tbx6 is expressed in the presomitic mesoderm. T-box factors are related through a shared DNA binding domain, the T-domain, and can therefore bind to similar DNA sequences at least in vitro. We investigated the functional similarities and differences of T and Tbx6 DNA binding and transcriptional activity in vitro and their interaction genetically in vivo. We show that at one target, Dll1, the T-domains of T and Tbx6 have different affinities for the binding sites present in the mesoderm enhancer. We further show using in vitro assays that T and Tbx6 differentially affect transcription with Tbx6 activating expression tenfold higher than T, that T and Tbx6 can compete at target gene enhancers, and that this competition requires a functional DNA binding domain. Next, we addressed whether T and Tbx6 can compete in vivo. First, we generated embryos that express Tbx6 at greater than wild-type levels embryos and show that these embryos have short tails, resembling the T heterozygous phenotype. Next, using the dominant-negative TWis allele, we show that Tbx6+/− TWis/+ embryos share similarities with embryos homozygous for the Tbx6 hypomorphic allele rib-vertebrae, specifically fusions of several ribs and malformation of some vertebrae. Finally, we tested whether Tbx6 can functionally replace T using a knockin approach, which resulted in severe T null-like phenotypes in chimeric embryos generated with ES cells heterozygous for a Tbx6 knockin at the T locus. Altogether, our results of differences in affinity for DNA binding sites and transcriptional activity for T and Tbx6 provide a potential mechanism for the failure of Tbx6 to functionally replace T and possible competition phenotypes in vivo.


1995 ◽  
Vol 15 (2) ◽  
pp. 861-871 ◽  
Author(s):  
K M Catron ◽  
H Zhang ◽  
S C Marshall ◽  
J A Inostroza ◽  
J M Wilson ◽  
...  

This study investigates the transcriptional properties of Msx-1, a murine homeodomain protein which has been proposed to play a key role in regulating the differentiation and/or proliferation state of specific cell populations during embryogenesis. We show, using basal and activated transcription templates, that Msx-1 is a potent repressor of transcription and can function through both TATA-containing and TATA-less promoters. Moreover, repression in vivo and in vitro occurs in the absence of DNA-binding sites for the Msx-1 homeodomain. Utilizing a series of truncated Msx-1 polypeptides, we show that multiple regions of Msx-1 contribute to repression, and these are rich in alanine, glycine, and proline residues. When fused to a heterologous DNA-binding domain, both N- and C-terminal regions of Msx-1 retain repressor function, which is dependent upon the presence of the heterologous DNA-binding site. Moreover, a polypeptide consisting of the full-length Msx-1 fused to a heterologous DNA-binding domain is a more potent repressor than either the N- or C-terminal regions alone, and this fusion retains the ability to repress transcription in the absence of the heterologous DNA site. We further show that Msx-1 represses transcription in vitro in a purified reconstituted assay system and interacts with protein complexes composed of TBP and TFIIA (DA) and TBP, TFIIA, and TFIIB (DAB) in gel retardation assays, suggesting that the mechanism of repression is mediated through interaction(s) with a component(s) of the core transcription complex. We speculate that the repressor function of Msx-1 is critical for its proposed role in embryogenesis as a regulator of cellular differentiation.


Sign in / Sign up

Export Citation Format

Share Document