A developmentally regulated DNA-binding protein from mouse brain stimulates myelin basic protein gene expression

1993 ◽  
Vol 13 (5) ◽  
pp. 3103-3112
Author(s):  
S Haas ◽  
J Gordon ◽  
K Khalili

Transcription of the myelin basic protein (MBP) gene is regulated in a cell-type-specific and developmental stage-specific manner during myelin formation in the murine central nervous system. The 5'-flanking region of the MBP gene contains several regulatory elements that differentially contribute to the cell-type-specific transcription of MBP in cells derived from the central nervous system. The proximal element, termed MB1, which is located between nucleotides -14 and -50 with respect to the RNA start site, has previously been shown to have characteristics of a cell-type-specific enhancer element. In this study, we used band shift and UV cross-linking assays to identify DNA-binding proteins in mouse brain nuclear extract which interact with the MB1 element. Fractionation of these extracts has allowed the identification of a 38- to 41-kDa nuclear protein, derived from mouse brain tissue at the peak of myelination, which specifically binds the MB1 DNA sequence. Fractions enriched in the MB1-binding protein have been shown to stimulate transcription of the MBP promoter in extract derived from HeLa cells. MB1 binding protein activity is expressed in a tissue-specific and development stage-specific pattern which coincides with the pattern of MBP transcription, suggesting that this protein may be a biologically relevant transcription factor for the MBP gene in vivo.

1993 ◽  
Vol 13 (5) ◽  
pp. 3103-3112 ◽  
Author(s):  
S Haas ◽  
J Gordon ◽  
K Khalili

Transcription of the myelin basic protein (MBP) gene is regulated in a cell-type-specific and developmental stage-specific manner during myelin formation in the murine central nervous system. The 5'-flanking region of the MBP gene contains several regulatory elements that differentially contribute to the cell-type-specific transcription of MBP in cells derived from the central nervous system. The proximal element, termed MB1, which is located between nucleotides -14 and -50 with respect to the RNA start site, has previously been shown to have characteristics of a cell-type-specific enhancer element. In this study, we used band shift and UV cross-linking assays to identify DNA-binding proteins in mouse brain nuclear extract which interact with the MB1 element. Fractionation of these extracts has allowed the identification of a 38- to 41-kDa nuclear protein, derived from mouse brain tissue at the peak of myelination, which specifically binds the MB1 DNA sequence. Fractions enriched in the MB1-binding protein have been shown to stimulate transcription of the MBP promoter in extract derived from HeLa cells. MB1 binding protein activity is expressed in a tissue-specific and development stage-specific pattern which coincides with the pattern of MBP transcription, suggesting that this protein may be a biologically relevant transcription factor for the MBP gene in vivo.


1995 ◽  
Vol 130 (5) ◽  
pp. 1171-1179 ◽  
Author(s):  
S Haas ◽  
P Thatikunta ◽  
A Steplewski ◽  
E M Johnson ◽  
K Khalili ◽  
...  

The MB1 regulatory sequence of the myelin basic protein (MBP) gene spanning between nucleotides -14 to -50 with respect to the transcription start site is critical for cell type-specific transcription of the MBP gene, which encodes the major protein component of myelin sheath in cells derived from the central nervous system (CNS). This regulatory sequence has the ability to interact with a developmentally controlled DNA-binding protein from mouse brain that stimulates transcription of MBP promoter in an in vitro system (Haas, S., J. Gordon, and K. Khalili. 1993. Mol. Cell. Biol. 13:3103-3112). Here, we report the purification of a 39-kD protein from mouse brain tissue at the peak of myelination and MBP production that binds to the MB1 regulatory motif. Following partial amino acid sequence analysis, we have identified a complementary DNA encoding a 39-kD DNA-binding protein called pur alpha. Expression of pur alpha cDNA in the prokaryotic and eukaryotic cells resulted in the synthesis of a protein with characteristics similar to the purified brain-derived 39-kD protein in band shift competition assays. Cotransfection of the recombinant pur alpha expressor plasmid with MBP promoter construct indicated that Pur alpha stimulates transcription of the MBP promoter in oligodendrocytic cells, and that the nucleotide sequence required for binding of the 39-kD Pur alpha to DNA within the MB1 region is crucial for this activity. Moreover, transient expression of Pur alpha caused elevation in the level of endogenous MBP RNA in oligodendrocytic cells. Thus, Pur alpha, a sequence-specific DNA-binding protein upon binding to MB1 regulatory region may play a significant role in determining the cell type-specific expression of MBP in brain.


2020 ◽  
Vol 528 (13) ◽  
pp. 2218-2238 ◽  
Author(s):  
Attilio Iemolo ◽  
Patricia Montilla‐Perez ◽  
I‐Chi Lai ◽  
Yinuo Meng ◽  
Syreeta Nolan ◽  
...  

Cell ◽  
1997 ◽  
Vol 91 (1) ◽  
pp. 71-83 ◽  
Author(s):  
Stig K Hansen ◽  
Shinako Takada ◽  
Raymond H Jacobson ◽  
John T Lis ◽  
Robert Tjian

Sign in / Sign up

Export Citation Format

Share Document