scholarly journals Regulation of DNA Replication Timing on Human Chromosome by a Cell-Type Specific DNA Binding Protein SATB1

PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e42375 ◽  
Author(s):  
Masako Oda ◽  
Yutaka Kanoh ◽  
Yoshihisa Watanabe ◽  
Hisao Masai
1993 ◽  
Vol 13 (5) ◽  
pp. 3103-3112
Author(s):  
S Haas ◽  
J Gordon ◽  
K Khalili

Transcription of the myelin basic protein (MBP) gene is regulated in a cell-type-specific and developmental stage-specific manner during myelin formation in the murine central nervous system. The 5'-flanking region of the MBP gene contains several regulatory elements that differentially contribute to the cell-type-specific transcription of MBP in cells derived from the central nervous system. The proximal element, termed MB1, which is located between nucleotides -14 and -50 with respect to the RNA start site, has previously been shown to have characteristics of a cell-type-specific enhancer element. In this study, we used band shift and UV cross-linking assays to identify DNA-binding proteins in mouse brain nuclear extract which interact with the MB1 element. Fractionation of these extracts has allowed the identification of a 38- to 41-kDa nuclear protein, derived from mouse brain tissue at the peak of myelination, which specifically binds the MB1 DNA sequence. Fractions enriched in the MB1-binding protein have been shown to stimulate transcription of the MBP promoter in extract derived from HeLa cells. MB1 binding protein activity is expressed in a tissue-specific and development stage-specific pattern which coincides with the pattern of MBP transcription, suggesting that this protein may be a biologically relevant transcription factor for the MBP gene in vivo.


1995 ◽  
Vol 130 (5) ◽  
pp. 1171-1179 ◽  
Author(s):  
S Haas ◽  
P Thatikunta ◽  
A Steplewski ◽  
E M Johnson ◽  
K Khalili ◽  
...  

The MB1 regulatory sequence of the myelin basic protein (MBP) gene spanning between nucleotides -14 to -50 with respect to the transcription start site is critical for cell type-specific transcription of the MBP gene, which encodes the major protein component of myelin sheath in cells derived from the central nervous system (CNS). This regulatory sequence has the ability to interact with a developmentally controlled DNA-binding protein from mouse brain that stimulates transcription of MBP promoter in an in vitro system (Haas, S., J. Gordon, and K. Khalili. 1993. Mol. Cell. Biol. 13:3103-3112). Here, we report the purification of a 39-kD protein from mouse brain tissue at the peak of myelination and MBP production that binds to the MB1 regulatory motif. Following partial amino acid sequence analysis, we have identified a complementary DNA encoding a 39-kD DNA-binding protein called pur alpha. Expression of pur alpha cDNA in the prokaryotic and eukaryotic cells resulted in the synthesis of a protein with characteristics similar to the purified brain-derived 39-kD protein in band shift competition assays. Cotransfection of the recombinant pur alpha expressor plasmid with MBP promoter construct indicated that Pur alpha stimulates transcription of the MBP promoter in oligodendrocytic cells, and that the nucleotide sequence required for binding of the 39-kD Pur alpha to DNA within the MB1 region is crucial for this activity. Moreover, transient expression of Pur alpha caused elevation in the level of endogenous MBP RNA in oligodendrocytic cells. Thus, Pur alpha, a sequence-specific DNA-binding protein upon binding to MB1 regulatory region may play a significant role in determining the cell type-specific expression of MBP in brain.


Genetics ◽  
1988 ◽  
Vol 120 (1) ◽  
pp. 75-81
Author(s):  
J Strathern ◽  
B Shafer ◽  
J Hicks ◽  
C McGill

Abstract The product of the MAT alpha 2 gene is a DNA-binding protein that acts as a repressor of two different sets of cell type-specific genes. In alpha cells, the alpha 2 protein represses the transcription of several a-specific genes. In a/alpha cells, the alpha 2 protein acts together with the product of the MATa1 gene, the a1 protein, to repress several genes used by haploids in the mating process. In addition to the mat alpha 2 mutations that result in defects in both types of regulation, other mat alpha 2 alleles have been described that result in defects in the repression of a-specific genes but that do not affect the ability of the alpha 2 and a1 proteins to interact to repress the haploid-specific genes. We report here the isolation of a new class of mat alpha 2 mutations that do not affect the ability of the alpha 2 protein to repress a-specific genes, but that interfere with the ability of the alpha 2 protein to interact with the a1 protein to repress the haploid-specific genes and establish the a/alpha cell type. These mutations may help determine the means by which the a1 protein interacts with alpha 2 to expand the set of genes under its control.


2000 ◽  
Vol 118 (4) ◽  
pp. A293
Author(s):  
Akira Muraoka ◽  
Mitsuru Kaise ◽  
Junko Yamada ◽  
Kei Matsueda ◽  
Ryosuke Shoda ◽  
...  

1993 ◽  
Vol 13 (5) ◽  
pp. 3103-3112 ◽  
Author(s):  
S Haas ◽  
J Gordon ◽  
K Khalili

Transcription of the myelin basic protein (MBP) gene is regulated in a cell-type-specific and developmental stage-specific manner during myelin formation in the murine central nervous system. The 5'-flanking region of the MBP gene contains several regulatory elements that differentially contribute to the cell-type-specific transcription of MBP in cells derived from the central nervous system. The proximal element, termed MB1, which is located between nucleotides -14 and -50 with respect to the RNA start site, has previously been shown to have characteristics of a cell-type-specific enhancer element. In this study, we used band shift and UV cross-linking assays to identify DNA-binding proteins in mouse brain nuclear extract which interact with the MB1 element. Fractionation of these extracts has allowed the identification of a 38- to 41-kDa nuclear protein, derived from mouse brain tissue at the peak of myelination, which specifically binds the MB1 DNA sequence. Fractions enriched in the MB1-binding protein have been shown to stimulate transcription of the MBP promoter in extract derived from HeLa cells. MB1 binding protein activity is expressed in a tissue-specific and development stage-specific pattern which coincides with the pattern of MBP transcription, suggesting that this protein may be a biologically relevant transcription factor for the MBP gene in vivo.


2021 ◽  
Vol 22 (9) ◽  
pp. 4959
Author(s):  
Lilas Courtot ◽  
Elodie Bournique ◽  
Chrystelle Maric ◽  
Laure Guitton-Sert ◽  
Miguel Madrid-Mencía ◽  
...  

DNA replication timing (RT), reflecting the temporal order of origin activation, is known as a robust and conserved cell-type specific process. Upon low replication stress, the slowing of replication forks induces well-documented RT delays associated to genetic instability, but it can also generate RT advances that are still uncharacterized. In order to characterize these advanced initiation events, we monitored the whole genome RT from six independent human cell lines treated with low doses of aphidicolin. We report that RT advances are cell-type-specific and involve large heterochromatin domains. Importantly, we found that some major late to early RT advances can be inherited by the unstressed next-cellular generation, which is a unique process that correlates with enhanced chromatin accessibility, as well as modified replication origin landscape and gene expression in daughter cells. Collectively, this work highlights how low replication stress may impact cellular identity by RT advances events at a subset of chromosomal domains.


1979 ◽  
Vol 29 (1) ◽  
pp. 322-327 ◽  
Author(s):  
D J McCorquodale ◽  
J Gossling ◽  
R Benzinger ◽  
R Chesney ◽  
L Lawhorne ◽  
...  

1983 ◽  
Vol 3 (3) ◽  
pp. 315-324 ◽  
Author(s):  
M P Quinlan ◽  
D M Knipe

Two herpes simplex virus proteins, the major capsid protein and the major DNA binding protein, are specifically localized to the nucleus of infected cells. We have found that the major proportion of these proteins is associated with the detergent-insoluble matrix or cytoskeletal framework of the infected cell from the time of their synthesis until they have matured to their final binding site in the cell nucleus. These results suggest that these two proteins may interact with or bind to the cellular cytoskeleton during or soon after their synthesis and throughout transport into the cell nucleus. In addition, the DNA binding protein remains associated with the nuclear skeleton at times when it is bound to viral DNA. Thus, viral DNA may also be attached to the nuclear framework. We have demonstrated that the DNA binding protein and the capsid protein exchange from the cytoplasmic framework to the nuclear framework, suggesting the direct movement of the proteins from one structure to the other. Inhibition of viral DNA replication enhanced the binding of the DNA binding protein to the cytoskeleton and increased the rate of exchange from the cytoplasmic framework to the nuclear framework, suggesting a functional relationship between these events. Inhibition of viral DNA replication resulted in decreased synthesis and transport of the capsid protein. We have been unable to detect any artificial binding of these proteins to the cytoskeleton when solubilized viral proteins were mixed with a cytoskeletal fraction or a cell monolayer. This suggested that the attachment of these proteins to the cytoskeleton represents the actual state of these proteins within the cell.


1983 ◽  
Vol 3 (3) ◽  
pp. 315-324
Author(s):  
M P Quinlan ◽  
D M Knipe

Two herpes simplex virus proteins, the major capsid protein and the major DNA binding protein, are specifically localized to the nucleus of infected cells. We have found that the major proportion of these proteins is associated with the detergent-insoluble matrix or cytoskeletal framework of the infected cell from the time of their synthesis until they have matured to their final binding site in the cell nucleus. These results suggest that these two proteins may interact with or bind to the cellular cytoskeleton during or soon after their synthesis and throughout transport into the cell nucleus. In addition, the DNA binding protein remains associated with the nuclear skeleton at times when it is bound to viral DNA. Thus, viral DNA may also be attached to the nuclear framework. We have demonstrated that the DNA binding protein and the capsid protein exchange from the cytoplasmic framework to the nuclear framework, suggesting the direct movement of the proteins from one structure to the other. Inhibition of viral DNA replication enhanced the binding of the DNA binding protein to the cytoskeleton and increased the rate of exchange from the cytoplasmic framework to the nuclear framework, suggesting a functional relationship between these events. Inhibition of viral DNA replication resulted in decreased synthesis and transport of the capsid protein. We have been unable to detect any artificial binding of these proteins to the cytoskeleton when solubilized viral proteins were mixed with a cytoskeletal fraction or a cell monolayer. This suggested that the attachment of these proteins to the cytoskeleton represents the actual state of these proteins within the cell.


Sign in / Sign up

Export Citation Format

Share Document