scholarly journals The adenovirus E4-6/7 protein transactivates the E2 promoter by inducing dimerization of a heteromeric E2F complex.

1994 ◽  
Vol 14 (2) ◽  
pp. 1333-1346 ◽  
Author(s):  
S Obert ◽  
R J O'Connor ◽  
S Schmid ◽  
P Hearing

Binding of the mammalian transcription factor E2F to the adenovirus E2a early promoter is modulated through interaction with the viral E4-6/7 protein. E4-6/7 induces the cooperative and stable binding of E2F in vitro to two correctly spaced and inverted E2F binding sites in the E2a promoter (E2F induction) by physical interaction in the protein-DNA complex. The E2a promoter is transactivated in vivo by the E4-6/7 product. The C-terminal 70 amino acids of E4-6/7 are necessary and sufficient for induction of E2F binding and for transactivation. To assess the mechanism(s) of E2a transactivation and the induction of cooperative E2F binding by the E4-6/7 protein, we have analyzed a series of point mutants in the functional C-terminal domain of E4-6/7. Two distinct segments of E4-6/7 are required for interaction with E2F. Additionally, and E4-6/7 mutant with a phenylalanine-to-proline substitution at amino acid 125 (F-125-P) efficiently interacts with E2F but does not induce E2F binding to the E2a promoter and is defective for transactivation. Induction of E2F stable complex formation at the E2a promoter by the F-125-P mutant protein is restored by divalent E4-6/7-specific monoclonal antibodies, but not a monovalent Fab fragment, or by appending a heterologous dimerization domain to the N terminus of the mutant protein. These and other data support the involvement of E4-6/7 dimerization in the induction of cooperative and stable E2F binding and transactivation of the E2a promoter. We present evidence that at least two cellular components are involved in E2F DNA binding activity and that both are required for E2F induction by the E4-6/7 product. The recently cloned E2F-related activities E2F-1 and DP-1 individually bind to an E2F binding site weakly, but when combined generate an activity that is indistinguishable from endogenous cellular E2F. Recombinant E2F-1, DP-1, and E4-6/7 are sufficient to form the induced E2F complex at the E2a promoter.

1994 ◽  
Vol 14 (2) ◽  
pp. 1333-1346
Author(s):  
S Obert ◽  
R J O'Connor ◽  
S Schmid ◽  
P Hearing

Binding of the mammalian transcription factor E2F to the adenovirus E2a early promoter is modulated through interaction with the viral E4-6/7 protein. E4-6/7 induces the cooperative and stable binding of E2F in vitro to two correctly spaced and inverted E2F binding sites in the E2a promoter (E2F induction) by physical interaction in the protein-DNA complex. The E2a promoter is transactivated in vivo by the E4-6/7 product. The C-terminal 70 amino acids of E4-6/7 are necessary and sufficient for induction of E2F binding and for transactivation. To assess the mechanism(s) of E2a transactivation and the induction of cooperative E2F binding by the E4-6/7 protein, we have analyzed a series of point mutants in the functional C-terminal domain of E4-6/7. Two distinct segments of E4-6/7 are required for interaction with E2F. Additionally, and E4-6/7 mutant with a phenylalanine-to-proline substitution at amino acid 125 (F-125-P) efficiently interacts with E2F but does not induce E2F binding to the E2a promoter and is defective for transactivation. Induction of E2F stable complex formation at the E2a promoter by the F-125-P mutant protein is restored by divalent E4-6/7-specific monoclonal antibodies, but not a monovalent Fab fragment, or by appending a heterologous dimerization domain to the N terminus of the mutant protein. These and other data support the involvement of E4-6/7 dimerization in the induction of cooperative and stable E2F binding and transactivation of the E2a promoter. We present evidence that at least two cellular components are involved in E2F DNA binding activity and that both are required for E2F induction by the E4-6/7 product. The recently cloned E2F-related activities E2F-1 and DP-1 individually bind to an E2F binding site weakly, but when combined generate an activity that is indistinguishable from endogenous cellular E2F. Recombinant E2F-1, DP-1, and E4-6/7 are sufficient to form the induced E2F complex at the E2a promoter.


2000 ◽  
Vol 20 (15) ◽  
pp. 5540-5553 ◽  
Author(s):  
Yue Liu ◽  
April L. Colosimo ◽  
Xiang-Jiao Yang ◽  
Daiqing Liao

ABSTRACT The adenovirus E1B 55-kDa protein binds to cellular tumor suppressor p53 and inactivates its transcriptional transactivation function. p53 transactivation activity is dependent upon its ability to bind to specific DNA sequences near the promoters of its target genes. It was shown recently that p53 is acetylated by transcriptional coactivators p300, CREB bidning protein (CBP), and PCAF and that acetylation of p53 by these proteins enhances p53 sequence-specific DNA binding. Here we show that the E1B 55-kDa protein specifically inhibits p53 acetylation by PCAF in vivo and in vitro, while acetylation of histones and PCAF autoacetylation is not affected. Furthermore, the DNA-binding activity of p53 is diminished in cells expressing the E1B 55-kDa protein. PCAF binds to the E1B 55-kDa protein and to a region near the C terminus of p53 encompassing Lys-320, the specific PCAF acetylation site. We further show that the E1B 55-kDa protein interferes with the physical interaction between PCAF and p53, suggesting that the E1B 55-kDa protein inhibits PCAF acetylase function on p53 by preventing enzyme-substrate interaction. These results underscore the importance of p53 acetylation for its function and suggest that inhibition of p53 acetylation by viral oncoproteins prevent its activation, thereby contributing to viral transformation.


1994 ◽  
Vol 14 (12) ◽  
pp. 8420-8431 ◽  
Author(s):  
M Xu ◽  
K A Sheppard ◽  
C Y Peng ◽  
A S Yee ◽  
H Piwnica-Worms

E2F-1, a member of the E2F transcription factor family, contributes to the regulation of the G1-to-S phase transition in higher eukaryotic cells. E2F-1 forms a heterodimer with DP-1 and binds to several cell cycle regulatory proteins, including the retinoblastoma family (RB, p107, p130) and cyclin A/CDK2 complexes. We have analyzed E2F-1 phosphorylation and its interaction with cyclin A/CDK2 complexes both in vivo and in vitro. In vitro, E2F-1 formed a stable complex with cyclin A/CDK2 but not with either subunit alone. DP-1 did not interact with cyclin A, CDK2, or the cyclin A/CDK2 complex. While the complex of cyclin A/CDK2 was required for stable complex formation with E2F-1, the kinase-active form of CDK2 was not required. However, E2F-1 was phosphorylated by cyclin A/CDK2 in vitro and was phosphorylated in vivo in HeLa cells. Two-dimensional tryptic phosphopeptide mapping studies demonstrated an overlap in the phosphopeptides derived from E2F-1 labeled in vitro and in vivo, indicating that cyclin A/CDK2 may be responsible for the majority of E2F-1 phosphorylation in vivo. Furthermore, an active DNA-binding complex could be reconstituted from purified E2F-1/DP-1 and cyclin A/CDK2. Binding studies conducted both in vitro and in vivo demonstrated that the cyclin A/CDK2-binding region resided within the N-terminal 124 amino acids of E2F-1. Because the stable association of E2F-1 with cyclin A/CDK2 in vitro and in vivo did not require a DP-1- or RB-binding domain and because the interactions could be reconstituted from purified components in vitro, we conclude that the interactions between cyclin A/CDK2 and E2F-1 are direct. Finally, we report that the DNA-binding activity of the E2F-1/DP-1 complex is inhibited following phosphorylation by cyclin A/CDK2.


1994 ◽  
Vol 14 (12) ◽  
pp. 8420-8431
Author(s):  
M Xu ◽  
K A Sheppard ◽  
C Y Peng ◽  
A S Yee ◽  
H Piwnica-Worms

E2F-1, a member of the E2F transcription factor family, contributes to the regulation of the G1-to-S phase transition in higher eukaryotic cells. E2F-1 forms a heterodimer with DP-1 and binds to several cell cycle regulatory proteins, including the retinoblastoma family (RB, p107, p130) and cyclin A/CDK2 complexes. We have analyzed E2F-1 phosphorylation and its interaction with cyclin A/CDK2 complexes both in vivo and in vitro. In vitro, E2F-1 formed a stable complex with cyclin A/CDK2 but not with either subunit alone. DP-1 did not interact with cyclin A, CDK2, or the cyclin A/CDK2 complex. While the complex of cyclin A/CDK2 was required for stable complex formation with E2F-1, the kinase-active form of CDK2 was not required. However, E2F-1 was phosphorylated by cyclin A/CDK2 in vitro and was phosphorylated in vivo in HeLa cells. Two-dimensional tryptic phosphopeptide mapping studies demonstrated an overlap in the phosphopeptides derived from E2F-1 labeled in vitro and in vivo, indicating that cyclin A/CDK2 may be responsible for the majority of E2F-1 phosphorylation in vivo. Furthermore, an active DNA-binding complex could be reconstituted from purified E2F-1/DP-1 and cyclin A/CDK2. Binding studies conducted both in vitro and in vivo demonstrated that the cyclin A/CDK2-binding region resided within the N-terminal 124 amino acids of E2F-1. Because the stable association of E2F-1 with cyclin A/CDK2 in vitro and in vivo did not require a DP-1- or RB-binding domain and because the interactions could be reconstituted from purified components in vitro, we conclude that the interactions between cyclin A/CDK2 and E2F-1 are direct. Finally, we report that the DNA-binding activity of the E2F-1/DP-1 complex is inhibited following phosphorylation by cyclin A/CDK2.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 661-672 ◽  
Author(s):  
Jodi L Vogel ◽  
Vincent Geuskens ◽  
Lucie Desmet ◽  
N Patrick Higgins ◽  
Ariane Toussaint

Abstract Mutations in an N-terminal 70-amino acid domain of bacteriophage Mu's repressor cause temperature-sensitive DNA-binding activity. Surprisingly, amber mutations can conditionally correct the heat-sensitive defect in three mutant forms of the repressor gene, cts25 (D43-G), cts62 (R47-Q and cts71 (M28-I), and in the appropriate bacterial host produce a heat-stable Sts phenotype (for survival of temperature shifts). Sts repressor mutants are heat sensitive when in supE or supF hosts and heat resistant when in Sup° hosts. Mutants with an Sts phenotype have amber mutations at one of three codons, Q179, Q187, or Q190. The Sts phenotype relates to the repressor size: in Sup° hosts sts repressors are shorter by seven, 10, or 18 amino acids compared to repressors in supE or supF hosts. The truncated form of the sts62-1 repressor, which lacks 18 residues (Q179–V196), binds Mu operator DNA more stably at 42° in vitro compared to its full-length counterpart (cts62 repressor). In addition to influencing temperature sensitivity, the C-terminus appears to control the susceptibility to in vivo Clp proteolysis by influencing the multimeric structure of repressor.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1056-1067 ◽  
Author(s):  
Mira T. Kassouf ◽  
Hedia Chagraoui ◽  
Paresh Vyas ◽  
Catherine Porcher

Abstract Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding–independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 245-255 ◽  
Author(s):  
M. Van Doren ◽  
H.M. Ellis ◽  
J.W. Posakony

In Drosophila, a group of regulatory proteins of the helix-loop-helix (HLH) class play an essential role in conferring upon cells in the developing adult epidermis the competence to give rise to sensory organs. Proteins encoded by the daughterless (da) gene and three genes of the achaete-scute complex (AS-C) act positively in the determination of the sensory organ precursor cell fate, while the extramacrochaetae (emc) and hairy (h) gene products act as negative regulators. In the region upstream of the achaete gene of the AS-C, we have identified three ‘E box’ consensus sequences that are bound specifically in vitro by hetero-oligomeric complexes consisting of the da protein and an AS-C protein. We have used this DNA-binding activity to investigate the biochemical basis of the negative regulatory function of emc. Under the conditions of our experiments, the emc protein, but not the h protein, is able to antagonize specifically the in vitro DNA-binding activity of da/AS-C and putative da/da protein complexes. We interpret these results as follows: the heterodimerization capacity of the emc protein (conferred by its HLH domain) allows it to act in vivo as a competitive inhibitor of the formation of functional DNA-binding protein complexes by the da and AS-C proteins, thereby reducing the effective level of their transcriptional regulatory activity within the cell.


1989 ◽  
Vol 9 (6) ◽  
pp. 2464-2476
Author(s):  
M Cockell ◽  
B J Stevenson ◽  
M Strubin ◽  
O Hagenbüchle ◽  
P K Wellauer

Footprint analysis of the 5'-flanking regions of the alpha-amylase 2, elastase 2, and trypsina genes, which are expressed in the acinar pancreas, showed multiple sites of protein-DNA interaction for each gene. Competition experiments demonstrated that a region from each 5'-flanking region interacted with the same cell-specific DNA-binding activity. We show by in vitro binding assays that this DNA-binding activity also recognizes a sequence within the 5'-flanking regions of elastase 1, chymotrypsinogen B, carboxypeptidase A, and trypsind genes. Methylation interference and protection studies showed that the DNA-binding activity recognized a bipartite motif, the subelements of which were separated by integral helical turns of DNA. The alpha-amylase 2 cognate sequence was found to enhance in vivo transcription of its own promoter in a cell-specific manner, which identified the DNA-binding activity as a transcription factor (PTF 1). The observation that PTF 1 bound to DNA sequences that have been defined as transcriptional enhancers by others suggests that this factor is involved in the coordinate expression of genes transcribed in the acinar pancreas.


1997 ◽  
Vol 273 (4) ◽  
pp. L814-L824 ◽  
Author(s):  
Zhou Zhu ◽  
Weiliang Tang ◽  
Jack M. Gwaltney ◽  
Yang Wu ◽  
Jack A. Elias

Neutrophil infiltration is a well-documented early event in the pathogenesis of rhinovirus (RV) infections. To further understand the mechanisms responsible for this neutrophilia, we determined whether interleukin (IL)-8 was present at sites of experimental RV infection in vivo and characterized the mechanism(s) by which RV stimulates IL-8 production in vitro. IL-8 was readily detectable in the nasal washings of all normal volunteers and did not increase with sham nasal inoculation. In contrast, RV infection caused a significant additional increase in nasal IL-8, the levels of which peaked 48–72 h after virus inoculation. RV was a potent stimulator of IL-8 protein production by A549 epithelial-like cells, MRC-5 fibroblasts, and normal human bronchial epithelial cells in vitro. This induction was associated with a significant increase in IL-8 mRNA accumulation and gene transcription. RV also stimulated IL-8 promoter-driven luciferase activity. This stimulation was significantly decreased by mutation of the nuclear factor (NF)-IL-6 site and was completely abrogated by mutation of the NF-κB site in this promoter. In addition, NF-κB-DNA binding activity was rapidly induced in RV-infected cells. This inducible binding was made up of p65 and, to a lesser extent, p50 NF-κB moieties. These studies demonstrate that IL-8 is present in normal nasal secretions and that the levels of IL-8 are further increased after RV infection. They also demonstrate that RVs are potent stimulators of IL-8 production and that this induction is mediated, at least in part, by an NF-κB-dependent transcriptional activation pathway. IL-8 may contribute to the pathogenesis of RV infection, and NF-κB activation may be a central event in RV-induced pathologies.


2004 ◽  
Vol 85 (7) ◽  
pp. 2001-2013 ◽  
Author(s):  
Koen W. R. van Cleef ◽  
Wendy M. A. Scaf ◽  
Karen Maes ◽  
Suzanne J. F. Kaptein ◽  
Erik Beuken ◽  
...  

An intriguing feature of the rat cytomegalovirus (RCMV) genome is open reading frame (ORF) r127, which shows similarity to the rep genes of parvoviruses as well as the U94 genes of human herpesvirus type 6A (HHV-6A) and 6B (HHV-6B). Counterparts of these genes have not been found in other herpesviruses. Here, it is shown that the r127 gene is transcribed during the early and late phases of virus replication in vitro as an unspliced 1·1 kb transcript containing the complete r127 ORF. Transcripts of r127 were also detected in various organs of RCMV-infected rats at 1 week post-infection (p.i.), but only in the salivary gland at 4 months p.i. Using rabbit polyclonal antibodies raised against the r127-encoded protein (pr127), pr127 was found to be expressed as early as 12 h p.i. within the nuclei of RCMV-infected cells in vitro. Expression of pr127 was also observed within the nuclei of cells in various organs of RCMV-infected rats at 3 weeks p.i. Moreover, pr127 was demonstrated to bind single- as well as double-stranded DNA. Finally, an RCMV r127 deletion mutant (RCMVΔr127) was generated, in which the r127 ORF was disrupted. This deletion mutant, however, was shown to replicate with a similar efficiency as wild-type RCMV (wt RCMV), both in vitro and in vivo. Taken together, it is concluded that the RCMV r127 gene encodes a nuclear protein with single- and double-stranded DNA-binding activity that is dispensable for virus replication, not only in vitro, but also during the acute phase of infection in vivo.


Sign in / Sign up

Export Citation Format

Share Document