scholarly journals Presence of negative and positive cis-acting RNA splicing elements within and flanking the first tat coding exon of human immunodeficiency virus type 1.

1994 ◽  
Vol 14 (6) ◽  
pp. 3960-3970 ◽  
Author(s):  
B A Amendt ◽  
D Hesslein ◽  
L J Chang ◽  
C M Stoltzfus

The human immunodeficiency virus type 1 (HIV-1) RNA follows a complex splicing pathway in which a single primary transcript either remains unspliced or is alternatively spliced to more than 30 different singly and multiply spliced mRNAs. We have used an in vitro splicing assay to identify cis elements within the viral genome that regulate HIV-1 RNA splicing. A novel splicing regulatory element (SRE) within the first tat coding exon has been detected. This element specifically inhibits splicing at the upstream 3' splice site flanking this tat exon. The element only functions when in the sense orientation and is position dependent when inserted downstream of a heterologous 3' splice site. In vivo, an HIV-1 SRE mutant demonstrated a decrease in unspliced viral RNA, increased levels of single- and double-spliced tat mRNA, and reduced levels of env and rev mRNAs. In addition to the negative cis-acting SRE, the flanking 5' splice site downstream of the first tat coding exon acts positively to increase splicing at the upstream 3' splice sites. These results are consistent with hypotheses of bridging interactions between cellular factors that bind to the 5' splice site and those that bind at the upstream 3' splice site.

1994 ◽  
Vol 14 (6) ◽  
pp. 3960-3970
Author(s):  
B A Amendt ◽  
D Hesslein ◽  
L J Chang ◽  
C M Stoltzfus

The human immunodeficiency virus type 1 (HIV-1) RNA follows a complex splicing pathway in which a single primary transcript either remains unspliced or is alternatively spliced to more than 30 different singly and multiply spliced mRNAs. We have used an in vitro splicing assay to identify cis elements within the viral genome that regulate HIV-1 RNA splicing. A novel splicing regulatory element (SRE) within the first tat coding exon has been detected. This element specifically inhibits splicing at the upstream 3' splice site flanking this tat exon. The element only functions when in the sense orientation and is position dependent when inserted downstream of a heterologous 3' splice site. In vivo, an HIV-1 SRE mutant demonstrated a decrease in unspliced viral RNA, increased levels of single- and double-spliced tat mRNA, and reduced levels of env and rev mRNAs. In addition to the negative cis-acting SRE, the flanking 5' splice site downstream of the first tat coding exon acts positively to increase splicing at the upstream 3' splice sites. These results are consistent with hypotheses of bridging interactions between cellular factors that bind to the 5' splice site and those that bind at the upstream 3' splice site.


2001 ◽  
Vol 75 (18) ◽  
pp. 8487-8497 ◽  
Author(s):  
Patricia S. Bilodeau ◽  
Jeffrey K. Domsic ◽  
Akila Mayeda ◽  
Adrian R. Krainer ◽  
C. Martin Stoltzfus

ABSTRACT The synthesis of human immunodeficiency virus type 1 (HIV-1) mRNAs is a complex process by which more than 30 different mRNA species are produced by alternative splicing of a single primary RNA transcript. HIV-1 splice sites are used with significantly different efficiencies, resulting in different levels of mRNA species in infected cells. Splicing of Tat mRNA, which is present at relatively low levels in infected cells, is repressed by the presence of exonic splicing silencers (ESS) within the two tat coding exons (ESS2 and ESS3). These ESS elements contain the consensus sequence PyUAG. Here we show that the efficiency of splicing at 3′ splice site A2, which is used to generate Vpr mRNA, is also regulated by the presence of an ESS (ESSV), which has sequence homology to ESS2 and ESS3. Mutagenesis of the three PyUAG motifs within ESSV increases splicing at splice site A2, resulting in increased Vpr mRNA levels and reduced skipping of the noncoding exon flanked by A2 and D3. The increase in Vpr mRNA levels and the reduced skipping also occur when splice site D3 is mutated toward the consensus sequence. By in vitro splicing assays, we show that ESSV represses splicing when placed downstream of a heterologous splice site. A1, A1B, A2, and B1 hnRNPs preferentially bind to ESSV RNA compared to ESSV mutant RNA. Each of these proteins, when added back to HeLa cell nuclear extracts depleted of ESSV-binding factors, is able to restore splicing repression. The results suggest that coordinate repression of HIV-1 RNA splicing is mediated by members of the hnRNP A/B protein family.


2003 ◽  
Vol 23 (23) ◽  
pp. 8762-8772 ◽  
Author(s):  
Jeffrey K. Domsic ◽  
Yibin Wang ◽  
Akila Mayeda ◽  
Adrian R. Krainer ◽  
C. Martin Stoltzfus

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) exonic splicing silencers (ESSs) inhibit production of certain spliced viral RNAs by repressing alternative splicing of the viral precursor RNA. Several HIV-1 ESSs interfere with spliceosome assembly by binding cellular hnRNP A/B proteins. Here, we have further characterized the mechanism of splicing repression using a representative HIV-1 hnRNP A/B-dependent ESS, ESSV, which regulates splicing at the vpr 3′ splice site. We show that hnRNP A/B proteins bound to ESSV are necessary to inhibit E complex assembly by competing with the binding of U2AF65 to the polypyrimidine tracts of repressed 3′ splice sites. We further show evidence suggesting that U1 snRNP binds the 5′ splice site despite an almost complete block of splicing by ESSV. Possible splicing-independent functions of U1 snRNP-5′ splice site interactions during virus replication are discussed.


1998 ◽  
Vol 18 (9) ◽  
pp. 5404-5413 ◽  
Author(s):  
Zhi-hai Si ◽  
Dan Rauch ◽  
C. Martin Stoltzfus

ABSTRACT Inefficient splicing of human immunodeficiency virus type 1 (HIV-1) RNA is necessary to preserve unspliced and singly spliced viral RNAs for transport to the cytoplasm by the Rev-dependent pathway. Signals within the HIV-1 genome that control the rate of splicing include weak 3′ splice sites, exon splicing enhancers (ESE), and exon splicing silencers (ESS). We have previously shown that an ESS present withintat exon 2 (ESS2) and a suboptimal 3′ splice site together act to inhibit splicing at the 3′ splice site flanking tatexon 2. This occurs at an early step in spliceosome assembly. Splicing at the 3′ splice site flanking tat exon 3 is regulated by a bipartite element composed of an ESE and an ESS (ESS3). Here we show that ESS3 is composed of two smaller elements (AGAUCC and UUAG) that can inhibit splicing independently. We also show that ESS3 is more active in the context of a heterologous suboptimal splice site than of an optimal 3′ splice site. ESS3 inhibits splicing by blocking the formation of a functional spliceosome at an early step, since A complexes are not detected in the presence of ESS3. Competitor RNAs containing either ESS2 or ESS3 relieve inhibition of splicing of substrates containing ESS3 or ESS2. This suggests that a common cellular factor(s) may be required for the inhibition oftat mRNA splicing mediated by ESS2 and ESS3.


2009 ◽  
Vol 83 (12) ◽  
pp. 6067-6078 ◽  
Author(s):  
Dibyakanti Mandal ◽  
Colin M. Exline ◽  
Zehua Feng ◽  
C. Martin Stoltzfus

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) accessory protein Vif is encoded by an incompletely spliced mRNA resulting from splicing of the major splice donor in the HIV-1 genome, 5′ splice site (5′ss) D1, to the first splice acceptor, 3′ss A1. We have shown previously that splicing of HIV-1 vif mRNA is tightly regulated by suboptimal 5′ss D2, which is 50 nucleotides downstream of 3′ss A1; a GGGG silencer motif proximal to 5′ss D2; and an SRp75-dependent exonic splicing enhancer (ESEVif). In agreement with the exon definition hypothesis, mutations within 5′ss D2 that are predicted to increase or decrease U1 snRNP binding affinity increase or decrease the usage of 3′ss A1 (D2-up and D2-down mutants, respectively). In this report, the importance of 5′ss D2 and ESEVif for avoiding restriction of HIV-1 by APOBEC3G (A3G) was determined by testing the infectivities of a panel of mutant viruses expressing different levels of Vif. The replication of D2-down and ESEVif mutants in permissive CEM-SS cells was not significantly different from that of wild-type HIV-1. Mutants that expressed Vif in 293T cells at levels greater than 10% of that of the wild type replicated similarly to the wild type in H9 cells, and Vif levels as low as 4% were affected only modestly in H9 cells. This is in contrast to Vif-deleted HIV-1, whose replication in H9 cells was completely inhibited. To test whether elevated levels of A3G inhibit replication of D2-down and ESEVif mutants relative to wild-type virus replication, a Tet-off Jurkat T-cell line that expressed approximately 15-fold-higher levels of A3G than control Tet-off cells was generated. Under these conditions, the fitness of all D2-down mutant viruses was reduced relative to that of wild-type HIV-1, and the extent of inhibition was correlated with the level of Vif expression. The replication of an ESEVif mutant was also inhibited only at higher levels of A3G. Thus, wild-type 5′ss D2 and ESEVif are required for production of sufficient Vif to allow efficient HIV-1 replication in cells expressing relatively high levels of A3G.


2000 ◽  
Vol 74 (22) ◽  
pp. 10822-10826 ◽  
Author(s):  
Marcus Graf ◽  
Alexandra Bojak ◽  
Ludwig Deml ◽  
Kurt Bieler ◽  
Hans Wolf ◽  
...  

ABSTRACT Based on the human immunodeficiency virus type 1 (HIV-1)gag gene, subgenomic reporter constructs have been established allowing the contributions of differentcis-acting elements to the Rev dependency of late HIV-1 gene products to be determined. Modification of intragenic regulatory elements achieved by adapting the codon usage of the complete gene to highly expressed mammalian genes resulted in constitutive nuclear export allowing high levels of Gag expression independent from the Rev/Rev-responsive element system and irrespective of the absence or presence of the isolated major splice donor. Leptomycin B inhibitor studies revealed that the RNAs derived from the codon-optimizedgag gene lacking AU-rich inhibitory elements are directed to a distinct, CRM1-independent, nuclear export pathway.


1995 ◽  
Vol 15 (8) ◽  
pp. 4606-4615 ◽  
Author(s):  
B A Amendt ◽  
Z H Si ◽  
C M Stoltzfus

Human immunodeficiency virus type 1 (HIV-1) pre-mRNA splicing is regulated in order to maintain pools of unspliced and partially spliced viral RNAs as well as the appropriate levels of multiply spliced mRNAs during virus infection. We have previously described an element in tat exon 2 that negatively regulates splicing at the upstream tat 3' splice site 3 (B. A. Amendt, D. Hesslein, L.-J. Chang, and C. M. Stoltzfus, Mol. Cell. Biol. 14:3960-3970, 1994). In this study, we further defined the element to a 20-nucleotide (nt) region which spans the C-terminal vpr and N-terminal tat coding sequences. By analogy with exon splicing enhancer (ESE) elements, we have termed this element an exon splicing silencer (ESS). We show evidence for another negative cis-acting region within tat-rev exon 3 of HIV-1 RNA that has sequence motifs in common with a 20-nt ESS element in tat exon 2. This sequence is juxtaposed to a purine-rich ESE element to form a bipartite element regulating splicing at the upstream tat-rev 3' splice site. Inhibition of the splicing of substrates containing the ESS element in tat exon 2 occurs at an early stage of spliceosome assembly. The inhibition of splicing mediated by the ESS can be specifically abrogated by the addition of competitor RNA. Our results suggest that HIV-1 RNA splicing is regulated by cellular factors that bind to positive and negative cis elements in tat exon 2 and tat-rev exon 3.


2004 ◽  
Vol 78 (12) ◽  
pp. 6517-6526 ◽  
Author(s):  
Massimo Caputi ◽  
Marcel Freund ◽  
Susanne Kammler ◽  
Corinna Asang ◽  
Heiner Schaal

ABSTRACT The integrated human immunodeficiency virus type 1 (HIV-1) genome is transcribed in a single pre-mRNA that is alternatively spliced into more than 40 mRNAs. We characterized a novel bidirectional exonic splicing enhancer (ESE) that regulates the expression of the HIV-1 env, vpu, rev, and nef mRNAs. The ESE is localized downstream of the vpu-, env-, and nef-specific 3′ splice site no. 5. SF2/ASF and SRp40 activate the ESE and are required for efficient 3′ splice site usage and binding of the U1 snRNP to the downstream 5′ splice site no. 4. U1 snRNP binding to the 5′ splice site no. 4 is required for splicing of the rev and nef mRNAs and to increase expression of the partially spliced env mRNA. Finally, our results indicate that this ESE is necessary for the recruitment of the U1 snRNP to the 5′ splice site no. 4, even when the 5′ splice site and the U1 snRNA have been mutated to obtain a perfect complementary match. The ESE characterized here is highly conserved in most viral subtypes.


1999 ◽  
Vol 80 (10) ◽  
pp. 2629-2638 ◽  
Author(s):  
Sameer A. Ansari ◽  
Mahmut Safak ◽  
Gary L. Gallia ◽  
Bassel E. Sawaya ◽  
Shohreh Amini ◽  
...  

Transcriptional regulation of the human immunodeficiency virus type 1 (HIV-1) genome is mediated by viral and cellular factors. TAR, an unusual RNA regulatory element with a stem–bulge–loop structure at the 5′ ends of all nascent viral transcripts is critical for HIV-1 transcription. TAR is the target for Tat, a viral transcription factor encoded early in the HIV-1 life-cycle and essential for gene expression. Evidence demonstrating the interaction of a cellular ssDNA/RNA binding protein, YB-1, with TAR through a region which is important for Tat interaction is presented. Interestingly, results from protein–protein interaction studies revealed that YB-1 can also form a complex with Tat. Results from mapping experiments suggest that while the region spanning aa 125–203 within YB-1 is essential for its association with TAR, a truncated YB-1 spanning aa 1–125 can weakly bind to Tat. Functionally, overexpression of full-length YB-1 enhanced Tat-induced activation of the HIV-1 minimal promoter containing TAR sequences, whereas mutant YB-1 with no ability to bind to Tat and TAR failed to affect Tat-mediated activation. Expression of mutant YB-1(1–125), which binds to Tat but not RNA, decreased Tat- mediated enhancement of virus transcription. These observations suggest that while full-length YB-1 may function as a facilitator and, by interaction with both Tat and TAR, increase the level of Tat:TAR association, mutant YB-1 with no TAR binding activity, by complexing with Tat, may prevent Tat interaction with TAR. The importance of these findings in light of the proposed mechanism of Tat function is discussed.


2008 ◽  
Vol 82 (16) ◽  
pp. 8038-8050 ◽  
Author(s):  
Joseph A. Jablonski ◽  
Emanuele Buratti ◽  
Cristiana Stuani ◽  
Massimo Caputi

ABSTRACT Splicing of human immunodeficiency virus type 1 (HIV-1) exon 6D is regulated by the presence of a complex splicing regulatory element (SRE) sequence that interacts with the splicing factors hnRNP H and SC35. In this work, we show that, in the context of the wild-type viral sequence, hnRNP H acts as a repressor of exon 6D inclusion independent of its binding to the SRE. However, hnRNP H binding to the SRE acts as an enhancer of exon 6D inclusion in the presence of a critical T-to-C mutation. These seemingly contrasting functional properties of hnRNP H appear to be caused by a change in the RNA secondary structure induced by the T-to-C mutation that affects the spatial location of bound hnRNP H with respect to the exon 6D splicing determinants. We propose a new regulatory mechanism mediated by RNA folding that may also explain the dual properties of hnRNP H in splicing regulation.


Sign in / Sign up

Export Citation Format

Share Document