scholarly journals Transcription of a variant human U6 small nuclear RNA gene is controlled by a novel, internal RNA polymerase III promoter.

1994 ◽  
Vol 14 (8) ◽  
pp. 5450-5457 ◽  
Author(s):  
J W Tichelaar ◽  
B Knerer ◽  
A Vrabel ◽  
E D Wieben

Promoter elements in the 5' flanking regions of vertebrate U6 RNA genes have been shown to be both necessary and sufficient for transcription by RNA polymerase III. We have recently isolated and characterized a variant human U6 gene (87U6) that can be transcribed by RNA polymerase III in vitro in the absence of any natural 5' or 3' flanking sequences. This gene contains 10 nucleotide differences from the previously characterized human U6 gene (wtU6) within the coding region but has no homology to wtU6 in the upstream promoter region. By constructing chimeras between these two genes, we have shown that mutation of as few as two nucleotides in the coding region of the human U6 RNA gene is sufficient to create an internal promoter that is functional in vitro. A T-to-C transition at position 57 and a single T deletion at position 52 produce an internal U6 promoter that is nearly as active in vitro as the external U6 polymerase III promoter utilized by wtU6. Neither of these residues is absolutely conserved during evolution, and both of these nucleotide changes occur within the previously noted A box homology. Deletion and linker scanning mutations within the coding region of this variant U6 gene suggest that, in addition to the central region including bp 52 and 57, sequences at the extreme 5' end of the gene are critical for efficient transcription. In contrast, flanking sequences have a minor effect on transcriptional efficiency. This arrangement is unique among internal RNA polymerase III promoters and may indicate unique regulation of this gene.

1994 ◽  
Vol 14 (8) ◽  
pp. 5450-5457
Author(s):  
J W Tichelaar ◽  
B Knerer ◽  
A Vrabel ◽  
E D Wieben

Promoter elements in the 5' flanking regions of vertebrate U6 RNA genes have been shown to be both necessary and sufficient for transcription by RNA polymerase III. We have recently isolated and characterized a variant human U6 gene (87U6) that can be transcribed by RNA polymerase III in vitro in the absence of any natural 5' or 3' flanking sequences. This gene contains 10 nucleotide differences from the previously characterized human U6 gene (wtU6) within the coding region but has no homology to wtU6 in the upstream promoter region. By constructing chimeras between these two genes, we have shown that mutation of as few as two nucleotides in the coding region of the human U6 RNA gene is sufficient to create an internal promoter that is functional in vitro. A T-to-C transition at position 57 and a single T deletion at position 52 produce an internal U6 promoter that is nearly as active in vitro as the external U6 polymerase III promoter utilized by wtU6. Neither of these residues is absolutely conserved during evolution, and both of these nucleotide changes occur within the previously noted A box homology. Deletion and linker scanning mutations within the coding region of this variant U6 gene suggest that, in addition to the central region including bp 52 and 57, sequences at the extreme 5' end of the gene are critical for efficient transcription. In contrast, flanking sequences have a minor effect on transcriptional efficiency. This arrangement is unique among internal RNA polymerase III promoters and may indicate unique regulation of this gene.


2001 ◽  
Vol 21 (19) ◽  
pp. 6429-6439 ◽  
Author(s):  
Michael P. Martin ◽  
Valerie L. Gerlach ◽  
David A. Brow

ABSTRACT The Saccharomyces cerevisiae U6 RNA gene,SNR6, possesses upstream sequences that allow productive binding in vitro of the RNA polymerase III (Pol III) transcription initiation factor IIIB (TFIIIB) in the absence of TFIIIC or other assembly factors. TFIIIC-independent transcription ofSNR6 in vitro is highly sensitive to point mutations in a consensus TATA box at position −30. In contrast, the TATA box is dispensable for SNR6 transcription in vivo, apparently because TFIIIC bound to the intragenic A block and downstream B block can recruit TFIIIB via protein-protein interactions. A mutant allele ofSNR6 with decreased spacing between the A and B blocks,snr6-Δ42, exhibits increased dependence on the upstream sequences in vivo. Unexpectedly, we find that in vivo expression of snr6-Δ42 is much more sensitive to mutations in a (dT-dA)7 tract between the TATA box and transcription start site than to mutations in the TATA box itself. Inversion of single base pairs in the center of the dT-dA tract nearly abolishes transcription of snr6-Δ42, yet inversion of all 7 base pairs has little effect on expression, indicating that the dA-dT tract is relatively orientation independent. Although it is within the TFIIIB footprint, point mutations in the dT-dA tract do not inhibit TFIIIB binding or TFIIIC-independent transcription ofSNR6 in vitro. In the absence of the chromatin architectural protein Nhp6, dT-dA tract mutations are lethal even when A-to-B block spacing is wild type. We conclude that the (dT-dA)7 tract and Nhp6 cooperate to direct productive transcription complex assembly on SNR6 in vivo.


2007 ◽  
Vol 27 (24) ◽  
pp. 8729-8738 ◽  
Author(s):  
Chih-Chi Yuan ◽  
Xinyang Zhao ◽  
Laurence Florens ◽  
Selene K. Swanson ◽  
Michael P. Washburn ◽  
...  

ABSTRACT Chromatin remodeling and histone modification are essential for eukaryotic transcription regulation, but little is known about chromatin-modifying activities acting on RNA polymerase III (Pol III)-transcribed genes. The human U6 small nuclear RNA promoter, located 5′ of the transcription start site, consists of a core region directing basal transcription and an activating region that recruits the transcription factors Oct-1 and Staf (ZNF143). Oct-1 activates transcription in part by helping recruit core binding factors, but nothing is known about the mechanisms of transcription activation by Staf. We show that Staf activates U6 transcription from a preassembled chromatin template in vitro and associates with several proteins linked to chromatin modification, among them chromodomain-helicase-DNA binding protein 8 (CHD8). CHD8 binds to histone H3 di- and trimethylated on lysine 4. It resides on the human U6 promoter as well as the mRNA IRF3 promoter in vivo and contributes to efficient transcription from both these promoters. Thus, Pol III transcription from type 3 promoters uses some of the same factors used for chromatin remodeling at Pol II promoters.


1991 ◽  
Vol 10 (7) ◽  
pp. 1853-1862 ◽  
Author(s):  
K.A. Simmen ◽  
J. Bernués ◽  
H.D. Parry ◽  
H.G. Stunnenberg ◽  
A. Berkenstam ◽  
...  

1987 ◽  
Vol 262 (1) ◽  
pp. 75-81
Author(s):  
R Reddy ◽  
D Henning ◽  
G Das ◽  
M Harless ◽  
D Wright

1993 ◽  
Vol 13 (5) ◽  
pp. 2655-2665 ◽  
Author(s):  
J G Howe ◽  
M D Shu

The Epstein-Barr virus-encoded small RNA (EBER) genes are transcribed by RNA polymerase III, but their transcription unit appears to contain both class II and class III promoter elements. One of these promoter element, a TATA-like box which we call the EBER TATA box, or ETAB, is located in a position typical for a class II TATA box but contains G/C residues in the normal T/A motif and a conserved thymidine doublet. Experiments using chloramphenicol acetyltransferase constructs and mutations in the TATA box of the adenovirus major late promoter showed that the ETAB promoter element does not substitute for a class II TATA box. However, when the ETAB promoter element sequence was changed to a class II TATA box consensus sequence, the EBER 2 gene was transcribed in vitro by both RNA polymerases II and III. From these results, we conclude that the ETAB promoter element is important for the exclusive transcription of the EBER 2 gene by RNA polymerase III.


Sign in / Sign up

Export Citation Format

Share Document