scholarly journals Glucocorticoids and protein kinase A coordinately modulate transcription factor recruitment at a glucocorticoid-responsive unit.

1995 ◽  
Vol 15 (10) ◽  
pp. 5346-5354 ◽  
Author(s):  
M L Espinás ◽  
J Roux ◽  
R Pictet ◽  
T Grange

The rat tyrosine aminotransferase gene is a model system to study transcriptional regulation by glucocorticoid hormones. We analyzed transcription factor binding to the tyrosine aminotransferase gene glucocorticoid-responsive unit (GRU) at kb -2.5, using in vivo footprinting studies with both dimethyl sulfate and DNase I. At this GRU, glucocorticoid activation triggers a disruption of the nucleosomal structure. We show here that various regulatory pathways affect transcription factor binding to this GRU. The binding differs in two closely related glucocorticoid-responsive hepatoma cell lines. In line H4II, glucocorticoid induction promotes the recruitment of hepatocyte nuclear factor 3 (HNF3), presumably through the nucleosomal disruption. However, the footprint of the glucocorticoid receptor (GR) is not visible, even though a regular but transient interaction of the GR is necessary to maintain HNF3 binding. In contrast, in line FTO2B, HNF3 binds to the GRU in the absence of glucocorticoids and nucleosomal disruption, showing that a "closed" chromatin conformation does not repress the binding of certain transcription factors in a uniform manner. In FTO2B cells, the footprint of the GR is detectable, but this requires the activation of protein kinase A. In addition, protein kinase A stimulation also improves the recruitment of HNF3 independently of glucocorticoids and enhances the glucocorticoid response mediated by this GRU in an HNF3-dependent manner. In conclusion, the differences in the behavior of this regulatory sequence in the two cell lines show that various regulatory pathways are integrated at this GRU through modulation of interrelated events: transcription factor binding to DNA and nucleosomal disruption.

2010 ◽  
Vol 226 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Hengyi Xiao ◽  
Scott E. LeBlanc ◽  
Qiong Wu ◽  
Silvana Konda ◽  
Nunciada Salma ◽  
...  

2001 ◽  
Vol 281 (5) ◽  
pp. E938-E945 ◽  
Author(s):  
Wei-Qun Ding ◽  
Eileen Holicky ◽  
Laurence J. Miller

Molecular mechanisms for the regulation of islet amyloid polypeptide (IAPP) gene expression remain unclear. In the present study, we investigated the effects of glucose and forskolin on IAPP gene regulation in the INS-1 islet β-cell line. Both glucose and forskolin increased the level of expression of this gene, as measured by Northern blot analysis, and increased IAPP gene transcription in a time- and concentration-dependent manner, as demonstrated in a reporter gene assay. Although inhibition of protein kinase A activity with H-89 eliminated the effect of forskolin on this gene, the glucose effect was unaffected. This supported the predominant use of a protein kinase A-independent signaling pathway for glucose regulation of the IAPP gene. Electrophoretic mobility shift assay further indicated that glucose and forskolin regulated expression of this gene by targeting different elements of the promoter. Mutation of the cAMP regulatory element flanking the IAPP coding region resulted in the loss of most of the forskolin-stimulated IAPP gene promoter activity, whereas glucose-enhanced IAPP gene transcription was unaffected. These results demonstrate parallel and distinct regulatory pathways involved in glucose- and forskolin-induced IAPP gene expression in this model β-cell system.


Biologia ◽  
2015 ◽  
Vol 70 (10) ◽  
Author(s):  
Yu Zhang ◽  
Pu Feng ◽  
Jianhong Yang

AbstractIncreased risk of osteoporosis in patients with diabetes mellitus may be related to hyperglycemia. However, the potential mechanisms accounting for diabetic bone disorder remain unresolved. The present study investigated the effects of high glucose-associated osmolality on differentiation of primary rat calvarial osteoblasts. Osteoblastogenic differentiation was determined by bone nodule staining for mineralization assay, enzyme-linked immunosorbent assay for type I collagen production and real-time polymerase chain reaction (PCR) for osteoblastogenic marker gene expression. Adipocytogenic differentiation was assessed by oil red O staining for lipid accumulation and real-time PCR for adipocytogenic marker gene expression. The phosphorylations of protein kinase A (PKA) and Akt were measured with or without specific inhibitors to confirm osmolality involved signalling pathways. The results showed that high glucose-associated osmolality significantly promoted adipocytogenic differentiation, manifested by increased lipid droplet formation and gene expression of adipocytogenic markers including adipocyte fatty acid binding protein (aP2), adipsin and peroxisome proliferator-activated receptor gamma (PPARγ). Meanwhile, high glucose-associated osmolality inhibited osteoblastogenic differentiation, characterized by decreased collagen I protein production and cell mineralization, as well as gene expression of osteoblastogenic markers including collagen I, osteocalcin and runt-related transcription factor 2 (Runx2). More importantly, we demonstrated for the first time that high glucose-associated osmolality induced adipocytogenic differentiation and suppressed osteoblastogenic differentiation in a PKA and phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner. These results indicated that osmolality was involved in high glucose-induced osteoblast trans-differentiation into adipocyte-like cell and suppression of cellular osmolality could provide novel therapeutic approach for diabetic osteopenia.


1997 ◽  
Vol 272 (1) ◽  
pp. C82-C89 ◽  
Author(s):  
S. Ledoux ◽  
J. C. Dussaule ◽  
C. Chatziantoniou ◽  
N. Ardaillou ◽  
S. Vandermeersch ◽  
...  

The purpose of this work was to examine whether the level of cAMP accumulation and protein kinase A (PKA) activity influence atrial natriuretic factor (ANF)-dependent guanosine 3',5'-cyclic monophosphate (cGMP) production in two renal cell types: rabbit cortical vascular smooth muscle cells (RCSMC) and SV-40-transformed human glomerular visceral epithelial cells (HGVEC-SV1). N-[2-(p-bromocinnamylamino)ethyl]- 5-isoquinolinesulfonamide (H-89), a PKA inhibitor, decreased ANF-stimulated cGMP production in RCSMC in a time- and concentration-dependent manner. ANF-stimulated cGMP production was markedly inhibited after prolonged 9- and 18-h incubations with 25 microM H-89 (52 and 65%, respectively) but was not altered after exposure of cells to this agent for 1 h. 1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine and N-(2-[methylamino]ethyl)-5-isoquinolinesulfonamide, protein kinase inhibitors not selective for PKA, did not reproduce the effect of H-89, even at higher concentrations (50 and 100 microM). Cycloheximide (10 microM), a protein synthesis inhibitor, limited the inhibitory effect of H-89, although alone it did not modify the ANF-stimulated cGMP production. H-89 did not affect cGMP production when it was stimulated by SIN-1, a nitric oxide donor. Prolonged incubation (18 h) with 8-bromo cAMP or cholera toxin, an activator of Gs protein resulting in adenylate cyclase stimulation, enhanced ANF-dependent cGMP production by 225 and 176%, respectively. This stimulatory effect was blocked by 25 microM H-89. 125I-ANF binding to RCSMC at 4 degrees C was not affected by preincubation of the cells with H-89. There was a 44% decrease in the expression of ANF C receptors measured as the ANF-(4-23)-displaceable 125I-ANF binding at 37 degrees C, which could not, however, explain the inhibitory effect of H-89 on cGMP production. Modulation of ANF- and C-type natriuretic peptide-dependent cGMP production by H-89 and cholera toxin was also found in HGVEC-SV1 with the same characteristics as in RCSMC. Taken together, these results suggest that PKA activity controls the function of natriuretic peptide guanylate cyclase-coupled receptors in the two cell types studied. PKA-dependent inhibition of a negatively regulatory protein distinct from the receptor itself seems necessary for a full cGMP response.


2021 ◽  
Author(s):  
Rebecca LaCroix ◽  
Benjamin Lin ◽  
Andre Levchenko

SummaryKinase activity in signaling networks frequently depends on regulatory subunits that can both inhibit activity by interacting with the catalytic subunits and target the kinase to distinct molecular partners and subcellular compartments. Here, using a new synthetic molecular interaction system, we show that translocation of a regulatory subunit of the protein kinase A (PKA-R) to the plasma membrane has a paradoxical effect on the membrane kinase activity. It can both enhance it at lower translocation levels, even in the absence of signaling inputs, and inhibit it at higher translocation levels, suggesting its role as a linker that can both couple and decouple signaling processes in a concentration-dependent manner. We further demonstrate that superposition of gradients of PKA-R abundance across single cells can control the directionality of cell migration, reversing it at high enough input levels. Thus complex in vivo patterns of PKA-R localization can drive complex phenotypes, including cell migration.


2010 ◽  
Vol 4 (5) ◽  
pp. 721-729
Author(s):  
Hamid Yaghooti ◽  
Mohsen Firoozrai ◽  
Soudabeh Fallah ◽  
Mohammad Reza Khorramizadeh

Abstract Background: Adenosine is known as a protective and anti-inflammatory nucleoside. Angiotensin II is the main hormone of the renin-angiotensin system. It is associated with endothelial permeability, recruitment, and activation of the immune cells through induction of inflammatory mediators. Matrix metalloproteinase-9 (MMP-9) plays an important role in inflammatory processes mediated by macrophages. Objectives: Investigate whether adenosine pretreatment modulates angiotensin II-induced MMP-9 expression and activation of signaling molecules. Methods: Human monocytic U-937 cells were treated with either adenosine or angiotensin II alone or angiotensin II following a pretreatment with adenosine. Supernatants were analyzed for MMP-9 activity by zymography method. MMP-9 gene expression was analyzed using real-time PCR. Activation of inflammatory mediators IκB-α, NF-κB, JNK, p38 MAPK, and STAT3 were analyzed by a multi-target ELISA kit. Association of Protein kinase A (PKA) in adenosine effects was studied by pre-incubation with H89, a selective PKA inhibitor. Results: Treatment of the cells with angiotensin II significantly increased MMP-9 production (p <0.05). Adenosine pretreatment did not attenuate this angiotensin II effect. Angiotensin II treatment induced NF-κB, JNK and p38 activation. Pretreatment with adenosine prior to angiotensin II stimulation showed a 40% inhibitory effect on p38 induction (p <0.05). This effect was reversed by PKA inhibition. Conclusion: The present data confirmed that monocytic MMP-9 was a target gene for angiotensin II. Adenosine pretreatment did not inhibit MMP-9 increase in response to angiotensin II. However, it showed a potential inhibitory effect on angiotensin II inflammatory signaling.


1997 ◽  
Vol 273 (5) ◽  
pp. F674-F679 ◽  
Author(s):  
Junya Nagai ◽  
Ikuko Yano ◽  
Yukiya Hashimoto ◽  
Mikihisa Takano ◽  
Ken-Ichi Inui

We have previously shown that the p-aminohippurate (PAH) transport system in OK kidney epithelial cell line is under the regulatory control of protein kinase C. Parathyroid hormone (PTH) could activate protein kinase C, as well as protein kinase A, in OK cells. In the present study, the effect of PTH on PAH transport was studied in OK cells. PTH inhibited the transcellular transport of PAH from the basal to the apical side, as well as the accumulation of PAH in OK cells. Basolateral PAH uptake was inhibited by PTH in a dose- and time-dependent manner. Protein kinase A activators did not affect the transcellular transport or the accumulation of PAH. The PTH-induced inhibition of the accumulation of PAH was blocked by a protein kinase C inhibitor staurosporine. These results suggest that PTH inhibits the PAH transport in OK cells and that the messenger system mediated by protein kinase C, not protein kinase A, plays an important role in the regulation of PAH transport by PTH.


Sign in / Sign up

Export Citation Format

Share Document