scholarly journals Bending DNA can repress a eukaryotic basal promoter and inhibit TFIID binding.

1995 ◽  
Vol 15 (10) ◽  
pp. 5492-5498 ◽  
Author(s):  
A TenHarmsel ◽  
M D Biggin

Previous studies indicated that repression by eve involves cooperative DNA binding and leads to the formation of a DNA loop which encompasses the DNA sequences normally bound by the RNA polymerase II general transcription factors. To test the general principle of whether bending of a basal promoter sequence can contribute directly to repression of transcription, a minicircle template of 245 bp was used. In a purified transcription system, transcription from the minicircular DNA is greatly reduced compared with that from the identical DNA fragment in linear form. Transcription is also reduced when the minicircle contains a single-stranded nick, indicating that transcription is reduced because of DNA bending, rather than any constraint on supercoiling. We show that the reduced transcription from the minicircle in these experiments is not due to a reduced rate of elongation by RNA polymerase II. Rather, repression occurs, at least in part, because binding of the general transcription factor TFIID to the minicircle is strongly inhibited compared with binding to the linear DNA. We suggest that bending DNA may be a mechanism by which eukaryotic transcription may be regulated, by modulating the activity of the general transcription factors.

2008 ◽  
Vol 36 (4) ◽  
pp. 595-598 ◽  
Author(s):  
Laura M. Elsby ◽  
Stefan G.E. Roberts

Transcription by RNA polymerase II requires the assembly of the general transcription factors at the promoter to form a pre-initiation complex. The general transcription factor TF (transcription factor) IIB plays a central role in the assembly of the pre-initiation complex, providing a bridge between promoter-bound TFIID and RNA polymerase II/TFIIF. We have characterized a series of TFIIB mutants in their ability to support transcription and recruit RNA polymerase II to the promoter. Our analyses identify several residues within the TFIIB zinc ribbon that are required for RNA polymerase II assembly. Using the structural models of TFIIB, we describe the interface between the TFIIB zinc ribbon region and RNA polymerase II.


1999 ◽  
Vol 19 (3) ◽  
pp. 2130-2141 ◽  
Author(s):  
T. C. Kuhlman ◽  
H. Cho ◽  
D. Reinberg ◽  
N. Hernandez

ABSTRACT RNA polymerase II transcribes the mRNA-encoding genes and the majority of the small nuclear RNA (snRNA) genes. The formation of a minimal functional transcription initiation complex on a TATA-box-containing mRNA promoter has been well characterized and involves the ordered assembly of a number of general transcription factors (GTFs), all of which have been either cloned or purified to near homogeneity. In the human RNA polymerase II snRNA promoters, a single element, the proximal sequence element (PSE), is sufficient to direct basal levels of transcription in vitro. The PSE is recognized by the basal transcription complex SNAPc. SNAPc, which is not required for transcription from mRNA-type RNA polymerase II promoters such as the adenovirus type 2 major late (Ad2ML) promoter, is thought to recruit TATA binding protein (TBP) and nucleate the assembly of the snRNA transcription initiation complex, but little is known about which GTFs other than TBP are required. Here we show that the GTFs IIA, IIB, IIF, and IIE are required for efficient RNA polymerase II transcription from snRNA promoters. Thus, although the factors that recognize the core elements of RNA polymerase II mRNA and snRNA-type promoters differ, they mediate the recruitment of many common GTFs.


Science ◽  
2009 ◽  
Vol 325 (5940) ◽  
pp. 626-628 ◽  
Author(s):  
Courtney Hodges ◽  
Lacramioara Bintu ◽  
Lucyna Lubkowska ◽  
Mikhail Kashlev ◽  
Carlos Bustamante

RNA polymerase II (Pol II) must overcome the barriers imposed by nucleosomes during transcription elongation. We have developed an optical tweezers assay to follow individual Pol II complexes as they transcribe nucleosomal DNA. Our results indicate that the nucleosome behaves as a fluctuating barrier that locally increases pause density, slows pause recovery, and reduces the apparent pause-free velocity of Pol II. The polymerase, rather than actively separating DNA from histones, functions instead as a ratchet that rectifies nucleosomal fluctuations. We also obtained direct evidence that transcription through a nucleosome involves transfer of the core histones behind the transcribing polymerase via a transient DNA loop. The interplay between polymerase dynamics and nucleosome fluctuations provides a physical basis for the regulation of eukaryotic transcription.


1998 ◽  
Vol 63 (0) ◽  
pp. 83-105 ◽  
Author(s):  
D. REINBERG ◽  
G. ORPHANIDES ◽  
R. EBRIGHT ◽  
S. AKOULITCHEV ◽  
J. CARCAMO ◽  
...  

1996 ◽  
Vol 10 (21) ◽  
pp. 2657-2683 ◽  
Author(s):  
G Orphanides ◽  
T Lagrange ◽  
D Reinberg

2000 ◽  
Vol 74 (5) ◽  
pp. 2169-2177 ◽  
Author(s):  
Mark G. Anderson ◽  
Kirsten E. S. Scoggin ◽  
Cynthia M. Simbulan-Rosenthal ◽  
Jennifer A. Steadman

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) encodes a transcriptional activator, Tax, whose activity is believed to contribute significantly to cellular transformation. Tax stimulates transcription from the proviral promoter as well as from promoters for a variety of cellular genes. The mechanism through which Tax communicates to the general transcription factors and RNA polymerase II has not been completely determined. We investigated whether Tax could function directly through the general transcription factors and RNA polymerase II or if other intermediary factors or coactivators were required. Our results show that a system consisting of purified recombinant TFIIA, TFIIB, TFIIE, TFIIF, CREB, and Tax, along with highly purified RNA polymerase II, affinity-purified epitope-tagged TFIID, and semipurified TFIIH, supports basal transcription of the HTLV-1 promoter but is not responsive to Tax. Two additional activities were required for Tax to stimulate transcription. We demonstrate that one of these activities is poly(ADP-ribose) polymerase (PARP), a molecule that has been previously identified to be the transcriptional coactivator PC1. PARP functions as a coactivator in our assays at molar concentrations approximately equal to those of the DNA and equal to or less than those of the transcription factors in the assay. We further demonstrate that PARP stimulates Tax-activated transcription in vivo, demonstrating that this biochemical approach has functionally identified a novel target for the retroviral transcriptional activator Tax.


Sign in / Sign up

Export Citation Format

Share Document