scholarly journals Nucleosomal Fluctuations Govern the Transcription Dynamics of RNA Polymerase II

Science ◽  
2009 ◽  
Vol 325 (5940) ◽  
pp. 626-628 ◽  
Author(s):  
Courtney Hodges ◽  
Lacramioara Bintu ◽  
Lucyna Lubkowska ◽  
Mikhail Kashlev ◽  
Carlos Bustamante

RNA polymerase II (Pol II) must overcome the barriers imposed by nucleosomes during transcription elongation. We have developed an optical tweezers assay to follow individual Pol II complexes as they transcribe nucleosomal DNA. Our results indicate that the nucleosome behaves as a fluctuating barrier that locally increases pause density, slows pause recovery, and reduces the apparent pause-free velocity of Pol II. The polymerase, rather than actively separating DNA from histones, functions instead as a ratchet that rectifies nucleosomal fluctuations. We also obtained direct evidence that transcription through a nucleosome involves transfer of the core histones behind the transcribing polymerase via a transient DNA loop. The interplay between polymerase dynamics and nucleosome fluctuations provides a physical basis for the regulation of eukaryotic transcription.

2021 ◽  
Author(s):  
René Dreos ◽  
Nati Malachi ◽  
Anna Sloutskin ◽  
Philipp Bucher ◽  
Tamar Juven-Gershon

AbstractMetazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a strict spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters.Author summaryTranscription of genes by the RNA polymerase II enzyme initiates at a genomic region termed the core promoter. The core promoter is a regulatory region that may contain diverse short DNA sequence motifs/elements that confer specific properties to it. Interestingly, core promoter motifs can be located both upstream and downstream of the transcription start site. Variable compositions of core promoter elements have been identified. The initiator (Inr) motif and the downstream core promoter element (DPE) is a combination of elements that has been identified and extensively characterized in fruit flies. Although a few Inr+DPE - containing human promoters have been identified, the presence of transcriptionally important downstream core promoter positions within human promoters has been a matter of controversy in the literature. Here, using a newly-designed motif discovery strategy, we discovered preferred downstream positions in human promoters that resemble fruit fly DPE. Clustering of the corresponding sequence motifs in eight additional species indicated that such promoters could be common to multicellular non-plant organisms. Importantly, functional characterization of the newly discovered preferred downstream positions supports the existence of Inr+DPE-containing promoters in human genes.


2004 ◽  
Vol 24 (23) ◽  
pp. 10111-10117 ◽  
Author(s):  
Marc A. Schwabish ◽  
Kevin Struhl

ABSTRACT Biochemical experiments indicate that transcriptional elongation by RNA polymerase II (Pol II) is inhibited by nucleosomes and hence requires chromatin-modifying activities. Here, we examine the fate of histones upon passage of elongating Pol II in vivo. Histone density throughout the entire Saccharomyces cerevisiae GAL10 coding region is inversely correlated with Pol II association and transcriptional activity, suggesting that the elongating Pol II machinery efficiently evicts core histones from the DNA. Furthermore, new histones appear to be deposited onto DNA less than 1 min after passage of Pol II. Transcription-dependent deposition of histones requires the FACT complex that travels with elongating Pol II. Our results suggest that Pol II transcription generates a highly dynamic equilibrium of histone eviction and histone deposition and that there is significant histone exchange throughout most of the yeast genome within a single cell cycle.


2020 ◽  
Vol 6 (50) ◽  
pp. eaaz7420
Author(s):  
Ryo Onishi ◽  
Kaoru Sato ◽  
Kensaku Murano ◽  
Lumi Negishi ◽  
Haruhiko Siomi ◽  
...  

Drosophila Piwi associates with PIWI-interacting RNAs (piRNAs) and represses transposons transcriptionally through heterochromatinization; however, this process is poorly understood. Here, we identify Brahma (Brm), the core adenosine triphosphatase of the SWI/SNF chromatin remodeling complex, as a new Piwi interactor, and show Brm involvement in activating transcription of Piwi-targeted transposons before silencing. Bioinformatic analyses indicated that Piwi, once bound to target RNAs, reduced the occupancies of SWI/SNF and RNA polymerase II (Pol II) on target loci, abrogating transcription. Artificial piRNA-driven targeting of Piwi to RNA transcripts enhanced repression of Brm-dependent reporters compared with Brm-independent reporters. This was dependent on Piwi cofactors, Gtsf1/Asterix (Gtsf1), Panoramix/Silencio (Panx), and Maelstrom (Mael), but not Eggless/dSetdb (Egg)–mediated H3K9me3 deposition. The λN-box B–mediated tethering of Mael to reporters repressed Brm-dependent genes in the absence of Piwi, Panx, and Gtsf1. We propose that Piwi, via Mael, can rapidly suppress transcription of Brm-dependent genes to facilitate heterochromatin formation.


1998 ◽  
Vol 62 (2) ◽  
pp. 465-503 ◽  
Author(s):  
Michael Hampsey

SUMMARY Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.


1995 ◽  
Vol 15 (10) ◽  
pp. 5492-5498 ◽  
Author(s):  
A TenHarmsel ◽  
M D Biggin

Previous studies indicated that repression by eve involves cooperative DNA binding and leads to the formation of a DNA loop which encompasses the DNA sequences normally bound by the RNA polymerase II general transcription factors. To test the general principle of whether bending of a basal promoter sequence can contribute directly to repression of transcription, a minicircle template of 245 bp was used. In a purified transcription system, transcription from the minicircular DNA is greatly reduced compared with that from the identical DNA fragment in linear form. Transcription is also reduced when the minicircle contains a single-stranded nick, indicating that transcription is reduced because of DNA bending, rather than any constraint on supercoiling. We show that the reduced transcription from the minicircle in these experiments is not due to a reduced rate of elongation by RNA polymerase II. Rather, repression occurs, at least in part, because binding of the general transcription factor TFIID to the minicircle is strongly inhibited compared with binding to the linear DNA. We suggest that bending DNA may be a mechanism by which eukaryotic transcription may be regulated, by modulating the activity of the general transcription factors.


2017 ◽  
Author(s):  
Gregory T. Booth ◽  
Pabitra K. Parua ◽  
Miriam Sansó ◽  
Robert P. Fisher ◽  
John T. Lis

Multiple kinases modify RNA Polymerase II (Pol II) and its associated pausing and elongation factors to regulate Pol II transcription and transcription-coupled mRNA processing1,2. The conserved Cdk9 kinase is essential for regulated eukaryotic transcription3, but its mechanistic role remains incompletely understood. Here, we use altered-specificity kinase mutations and highly-specific inhibitors in fission yeast, Schizosaccharomyces pombe to examine the role of Cdk9, and related Cdk7 and Cdk12 kinases, on transcription at base-pair resolution using Precision Run-On sequencing (PRO-seq). Within a minute, Cdk9 inhibition causes a dramatic reduction in the phosphorylation of Pol II-associated factor, Spt5. The effects of Cdk9 inhibition on transcription are the more severe than inhibition of Cdk7 and Cdk12 and result in a shift of Pol II towards the transcription start site (TSS). A kinetic time course of Cdk9 inhibition reveals that early transcribing Pol II is the most compromised, with a measured rate of only ~400 bp/min, while Pol II that is already well into the gene continues rapidly to the end of genes with a rate > 1 kb/min. Our results indicate that while Pol II in S. pombe can escape promoter-proximal pausing in the absence of Cdk9 activity, it is impaired in elongation, suggesting the existence of a conserved global regulatory checkpoint that requires Cdk9 kinase activity.


2016 ◽  
Vol 113 (45) ◽  
pp. 12733-12738 ◽  
Author(s):  
Veronika Fitz ◽  
Jaeoh Shin ◽  
Christoph Ehrlich ◽  
Lucas Farnung ◽  
Patrick Cramer ◽  
...  

In eukaryotes, gene expression depends on chromatin organization. However, how chromatin affects the transcription dynamics of individual RNA polymerases has remained elusive. Here, we use dual trap optical tweezers to study single yeast RNA polymerase II (Pol II) molecules transcribing along a DNA template with two nucleosomes. The slowdown and the changes in pausing behavior within the nucleosomal region allow us to determine a drift coefficient, χ, which characterizes the ability of the enzyme to recover from a nucleosomal backtrack. Notably, χ can be used to predict the probability to pass the first nucleosome. Importantly, the presence of a second nucleosome changes χ in a manner that depends on the spacing between the two nucleosomes, as well as on their rotational arrangement on the helical DNA molecule. Our results indicate that the ability of Pol II to pass the first nucleosome is increased when the next nucleosome is turned away from the first one to face the opposite side of the DNA template. These findings help to rationalize how chromatin arrangement affects Pol II transcription dynamics.


2000 ◽  
Vol 20 (23) ◽  
pp. 8866-8878 ◽  
Author(s):  
R. U. Protacio ◽  
G. Li ◽  
P. T. Lowary ◽  
J. Widom

ABSTRACT The N-terminal tail domains of the core histones play important roles in gene regulation, but the exact mechanisms through which they act are not known. Recent studies suggest that the tail domains may influence the ability of RNA polymerase to elongate through the nucleosomal DNA and, thus, that posttranslational modification of the tail domains may provide a control point for gene regulation through effects on the elongation rate. We take advantage of an experimental system that uses bacteriophage T7 RNA polymerase as a probe for aspects of nucleosome transcription that are dominated by the properties of nucleosomes themselves. With this system, experiments can analyze the synchronous, real-time, single-passage transcription on the nucleosomal template. Here, we use this system to directly test the hypothesis that the tail domains may influence the “elongatability” of nucleosomal DNA and to identify which of the tail domains may contribute to this. The results show that the tail domains strongly influence the rate of elongation and suggest that the effect is dominated by the N-terminal domains of the (H3-H4)2 tetramer. They further imply that tail-mediated octamer transfer is not essential for elongation through the nucleosome. Acetylation of the tail domains leads to effects on elongation that are similar to those arising from complete removal of the tail domains.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shu-Hao Liou ◽  
Sameer K. Singh ◽  
Robert H. Singer ◽  
Robert A. Coleman ◽  
Wei-Li Liu

AbstractThe tumor suppressor p53 protein activates expression of a vast gene network in response to stress stimuli for cellular integrity. The molecular mechanism underlying how p53 targets RNA polymerase II (Pol II) to regulate transcription remains unclear. To elucidate the p53/Pol II interaction, we have determined a 4.6 Å resolution structure of the human p53/Pol II assembly via single particle cryo-electron microscopy. Our structure reveals that p53’s DNA binding domain targets the upstream DNA binding site within Pol II. This association introduces conformational changes of the Pol II clamp into a further-closed state. A cavity was identified between p53 and Pol II that could possibly host DNA. The transactivation domain of p53 binds the surface of Pol II’s jaw that contacts downstream DNA. These findings suggest that p53’s functional domains directly regulate DNA binding activity of Pol II to mediate transcription, thereby providing insights into p53-regulated gene expression.


2010 ◽  
Vol 30 (10) ◽  
pp. 2460-2472 ◽  
Author(s):  
M. Nurul Islam ◽  
David Fox ◽  
Rong Guo ◽  
Takemi Enomoto ◽  
Weidong Wang

ABSTRACT The RecQL5 helicase is essential for maintaining genome stability and reducing cancer risk. To elucidate its mechanism of action, we purified a RecQL5-associated complex and identified its major component as RNA polymerase II (Pol II). Bioinformatics and structural modeling-guided mutagenesis revealed two conserved regions in RecQL5 as KIX and SRI domains, already known in transcriptional regulators for Pol II. The RecQL5-KIX domain binds both initiation (Pol IIa) and elongation (Pol IIo) forms of the polymerase, whereas the RecQL5-SRI domain interacts only with the elongation form. Fully functional RecQL5 requires both helicase activity and associations with the initiation polymerase, because mutants lacking either activity are partially defective in the suppression of sister chromatid exchange and resistance to camptothecin-induced DNA damage, and mutants lacking both activities are completely defective. We propose that RecQL5 promotes genome stabilization through two parallel mechanisms: by participation in homologous recombination-dependent DNA repair as a RecQ helicase and by regulating the initiation of Pol II to reduce transcription-associated replication impairment and recombination.


Sign in / Sign up

Export Citation Format

Share Document