scholarly journals ROM7/BEM4 encodes a novel protein that interacts with the Rho1p small GTP-binding protein in Saccharomyces cerevisiae.

1996 ◽  
Vol 16 (8) ◽  
pp. 4396-4403 ◽  
Author(s):  
H Hirano ◽  
K Tanaka ◽  
K Ozaki ◽  
H Imamura ◽  
H Kohno ◽  
...  

The RHO1 gene encodes a homolog of the mammalian RhoA small GTP-binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth site and is required for bud formation. The RHO1(G22S, D125N) mutation is a temperature-sensitive and dominant negative mutation of RHO1, and a multicopy suppressor of RHO1(G22S, D125N), ROM7, was isolated. Nucleotide sequencing of ROM7 revealed that it is identical to the BEM4 gene (GenBank accession number L27816), although its physiological function has not yet been reported. Disruption of BEM4 resulted in the cold- and temperature-sensitive growth phenotypes, and cells of the deltabem4 mutant showed abnormal morphology, suggesting that BEM4 is involved in the budding process. The temperature-sensitive growth phenotype was suppressed by overexpression of RHO1, ROM2, which encodes a Rho1p-specific GDP/GTP exchange factor, or PKC1, which encodes a target of Rho1p. Moreover, glucan synthase activity, which is activated by Rho1p, was significantly reduced in the deltabem4 mutant. Two-hybrid and biochemical experiments revealed that Bem4p directly interacts with the nucleotide-free form of Rho1p and, to lesser extents, with the GDP- and GTP-bound forms of Rho1p, although Bem4p showed neither GDP/GTP exchange factor, GDP dissociation inhibitor, nor GTPase-activating protein activity toward Rho1p. These results indicate that Bem4p is a novel protein directly interacting with Rho1p and is involved in the RHO1-mediated signaling pathway.

1996 ◽  
Vol 15 (22) ◽  
pp. 6060-6068 ◽  
Author(s):  
H. Kohno ◽  
K. Tanaka ◽  
A. Mino ◽  
M. Umikawa ◽  
H. Imamura ◽  
...  

1985 ◽  
Vol 232 (1) ◽  
pp. 191-197 ◽  
Author(s):  
S K Wong ◽  
B R Martin ◽  
A M Tolkovsky

We compared the effects of guanine nucleotides and Mg2+ on ADP-ribosylation of rat brain and liver membrane proteins catalysed by Bordetella pertussis toxin (IAP) and cholera toxin (CT). Labelling of proteins in the presence of [alpha-32P]NAD+, ATP and CT required GTP or guanosine 5′-[γ-thio]triphosphate (GTP [S]). In contrast, labelling of one (liver) or two (brain) polypeptides by IAP was enhanced by guanosine 5′-[β-thio]diphosphate (GDP[S]) or GTP, but was blocked by GTP[S] or guanosine 5′-[β, γ-imido]triphosphate (p[NH]ppG). The order of labelling intensity was GDP[S] greater than GTP greater than no addition greater than GTP[S] = p [NH]ppG. Mg2+ increased labelling by CT, but decreased labelling by IAP. In addition, Mg2+ potentiated the effects of the guanine nucleotides, increasing the inhibitory effects of GTP[S] and the activatory effects of GDP[S] or GTP. Preincubating liver membranes at 30 degrees C in the presence of 10 mm-MgCl2 inhibited labelling by IAP irreversibly. Pretreatment of liver membranes with 4.95 mM-N-ethylmaleimide decreased labelling by CT by approximately 15%, but almost completely blocked labelling by IAP. These results suggest that the undissociated, GDP-bound, conformation of Ni, the inhibitory GTP-binding protein of adenylate cyclase, is the preferred substrate for ADP-ribosylation by IAP. This conformation, which is prevalent in native membranes, is sensitive to temperature, Mg2+ ions and alkylating agents such as N-ethylmaleimide. At 30 degrees C, Mg2+ may cause dissociation and denaturation of Ni in native membranes.


Biochemistry ◽  
1999 ◽  
Vol 38 (35) ◽  
pp. 11250-11260 ◽  
Author(s):  
Matthias Geyer ◽  
Ralf Assheuer ◽  
Christian Klebe ◽  
Jürgen Kuhlmann ◽  
Jörg Becker ◽  
...  

1996 ◽  
Vol 15 (9) ◽  
pp. 2196-2207 ◽  
Author(s):  
K. Ozaki ◽  
K. Tanaka ◽  
H. Imamura ◽  
T. Hihara ◽  
T. Kameyama ◽  
...  

1994 ◽  
Vol 26 (5-6) ◽  
pp. 564-566 ◽  
Author(s):  
Ralf Wolter ◽  
Dorothea Richter ◽  
Eckhard Niegemann ◽  
Martin Brendel

1994 ◽  
Vol 125 (5) ◽  
pp. 1077-1093 ◽  
Author(s):  
W Yamochi ◽  
K Tanaka ◽  
H Nonaka ◽  
A Maeda ◽  
T Musha ◽  
...  

The Rho small GTP-binding protein family regulates various actomyosin-dependent cell functions, such as cell morphology, locomotion, cytokinesis, membrane ruffling, and smooth muscle contraction. In the yeast Saccharomyces cerevisiae, there is a homologue of mammalian RhoA, RHO1, which is essential for vegetative growth of yeast cells. To explore the function of the RHO1 gene, we isolated a recessive temperature-sensitive mutation of RHO1, rho1-104. The rho1-104 mutation caused amino acid substitutions of Asp 72 to Asn and Cys 164 to Tyr of Rho1p. Strains bearing the rho1-104 mutation accumulated tiny- or small-budded cells in which cortical actin patches were clustered to buds at the restrictive temperature. Cell lysis and cell death were also seen with the rho1-104 mutant. Indirect immunofluorescence microscopic study demonstrated that Rho1p was concentrated to the periphery of the cells where cortical actin patches were clustered, including the site of bud emergence, the tip of the growing buds, and the mother-bud neck region of cells prior to cytokinesis. Indirect immunofluorescence study with cells overexpressing RHO1 suggested that the Rho1p-binding site was saturable. A mutant Rho1p with an amino acid substitution at the lipid modification site remained in the cytoplasm. These results suggest that Rho1 small GTP-binding protein binds to a specific site at the growth region of cells, where Rho1p exerts its function in controlling cell growth.


Structure ◽  
2015 ◽  
Vol 23 (7) ◽  
pp. 1336-1343 ◽  
Author(s):  
Eva Kowalinski ◽  
Anthony Schuller ◽  
Rachel Green ◽  
Elena Conti

1999 ◽  
Vol 82 (09) ◽  
pp. 1177-1181 ◽  
Author(s):  
Hubert de Leeuw ◽  
Pauline Wijers-Koster ◽  
Jan van Mourik ◽  
Jan Voorberg

SummaryIn endothelial cells von Willebrand factor (vWF) and P-selectin are stored in dense granules, so-called Weibel-Palade bodies. Upon stimulation of endothelial cells with a variety of agents including thrombin, these organelles fuse with the plasma membrane and release their content. Small GTP-binding proteins have been shown to control release from intracellular storage pools in a number of cells. In this study we have investigated whether small GTP-binding proteins are associated with Weibel-Palade bodies. We isolated Weibel-Palade bodies by centrifugation on two consecutive density gradients of Percoll. The dense fraction in which these subcellular organelles were highly enriched, was analysed by SDS-PAGE followed by GTP overlay. A distinct band with an apparent molecular weight of 28,000 was observed. Two-dimensional gel electrophoresis followed by GTP overlay revealed the presence of a single small GTP-binding protein with an isoelectric point of 7.1. A monoclonal antibody directed against RalA showed reactivity with the small GTP-binding protein present in subcellular fractions that contain Weibel-Palade bodies. The small GTPase RalA was previously identified on dense granules of platelets and on synaptic vesicles in nerve terminals. Our observations suggest that RalA serves a role in regulated exocytosis of Weibel-Palade bodies in endothelial cells.


1998 ◽  
Vol 79 (04) ◽  
pp. 832-836 ◽  
Author(s):  
Thomas Fischer ◽  
Christina Duffy ◽  
Gilbert White

SummaryPlatelet membrane glycoproteins (GP) IIb/IIIa and rap1b, a 21 kDa GTP binding protein, associate with the triton-insoluble, activation-dependent platelet cytoskeleton with similar rates and divalent cation requirement. To examine the possibility that GPIIb/IIIa was required for rap1b association with the cytoskeleton, experiments were performed to determine if the two proteins were linked under various conditions. Chromatography of lysates from resting platelets on Sephacryl S-300 showed that GPIIb/IIIa and rap1b were well separated and distinct proteins. Immunoprecipitation of GPIIb/IIIa from lysates of resting platelets did not produce rap1b or other low molecular weight GTP binding proteins and immunoprecipitation of rap1b from lysates of resting platelets did not produce GPIIb/IIIa. Finally, rap1b was associated with the activation-dependent cytoskeleton of platelets from a patient with Glanzmann’s thrombasthenia who lacks surface expressed glycoproteins IIb and IIIa. Based on these findings, we conclude that no association between GPIIb/IIIa and rap1b is found in resting platelets and that rap1b association with the activation-dependent cytoskeleton is at least partly independent of GPIIb/IIIa.


Sign in / Sign up

Export Citation Format

Share Document