scholarly journals Structure-function analysis of the Saccharomyces cerevisiae G1 cyclin Cln2.

1997 ◽  
Vol 17 (8) ◽  
pp. 4654-4666 ◽  
Author(s):  
K N Huang ◽  
S A Odinsky ◽  
F R Cross

We have generated 50 new alleles of the yeast CLN2 gene by using site-directed mutagenesis. With the recently obtained crystal structure of cyclin A as a guide, a peptide linker sequence was inserted at 13 sites within the cyclin box of Cln2 to determine if the architecture of Cln2 is similar to that of cyclin A. Linkers inserted in what are predicted to be helices 1, 2, 3, and 5 of the cyclin box resulted in nonfunctional Cln2 molecules. Linkers inserted between these putative helix sites and in the region believed to contain a fourth helix did not have significant effects upon Cln2 function. A series of deletions in the region between the third and fifth helices indicate that the putative fourth helix may lie at the C-terminal end of this region yet is not essential for function. Two residues that are predicted to form a buried salt bridge important for interaction of two helices of the cyclin box were also mutated, and an additional set of 31 mutant alleles was generated by clustered-charge-to-alanine scanning mutagenesis. All of the mutant CLN2 alleles made in this study were tested in a variety of genetic and functional assays previously demonstrated to differentiate specific cyclin functions. Some alleles demonstrated restricted patterns of defects, suggesting that these mutations may interfere with specific aspects of Cln2 function.

2000 ◽  
Vol 28 (6) ◽  
pp. 636-638 ◽  
Author(s):  
O. Sayanova ◽  
F. Beaudoin ◽  
B. Libisch ◽  
P. Shewry ◽  
J. Napier

The consensus sequence of the third histidine box of a range of Δ5, Δ6, Δ8 and sphingolipid desaturases differs from that of the membrane-bound non-fusion Δ12 and Δ15 desaturases in the presence of glutamine instead of histidine. We have used site-directed mutagenesis to determine the importance of glutamine and other residues of the third histidine box and created a chimaeric enzyme to determine the ability of the Cyt b5 fusion domain from the plant sphingolipid desaturase to substitute for the endogenous domain of the Δ6 desaturase.


2007 ◽  
Vol 73 (9) ◽  
pp. 2931-2938 ◽  
Author(s):  
Camilla Oppegård ◽  
Gunnar Fimland ◽  
Lisbeth Thorbæk ◽  
Jon Nissen-Meyer

ABSTRACT The two peptides (Lcn-α and Lcn-β) of the two-peptide bacteriocin lactococcin G (Lcn) were changed by stepwise site-directed mutagenesis into the corresponding peptides (Ent-α and Ent-β) of the two-peptide bacteriocin enterocin 1071 (Ent), and the potencies and specificities of the various hybrid constructs were determined. Both Lcn and, to a lesser extent, Ent were active against all the tested lactococcal strains, but only Ent was active against the tested enterococcal strains. The two bacteriocins thus differed in their relative potencies to various target cells, despite their sequence similarities. The hybrid combination Lcn-α+Ent-β had low potency against all strains tested, indicating that these two peptides do not interact optimally. The reciprocal hybrid combination (i.e., Ent-α+Lcn-β), in contrast, was highly potent, indicating that these two peptides may form a functional antimicrobial unit. In fact, this hybrid combination (Ent-α+Lcn-β) was more potent against lactococcal strains than wild-type Ent was (i.e., Ent-α+Ent-β), but it was inactive against enterococcal strains (in contrast to Ent but similar to Lcn). The observation that Ent-α is more active against lactococci in combination with Lcn-β and more active against enterococci in combination with Ent-β suggests that the β peptide is an important determinant of target cell specificity. Especially the N-terminal residues of the β peptide seem to be important for specificity, since Ent-α combined with an Ent-β variant with Ent-to-Lcn mutations at positions 1 to 4, 7, 9, and 10 was >150-fold less active against enterococcal strains but one to four times more active against lactococcal strains than Ent-α+Ent-β. Moreover, Ent-to-Lcn single-residue mutations in the region spanning residues 1 to 7 in Ent-β had a more detrimental effect on the activity against enterococci than on that against lactococcal strains. Of the single-residue mutations made in the N-terminal region of the α peptide, the Ent-to-Lcn mutations N8Q and P12R in Ent-α influenced specificity, as follows: the N8Q mutation had no effect on activity against tested enterococcal strains but increased the activity 2- to 4-fold against the tested lactococcal strains, and the P12R mutation reduced the activity >150-fold and only ∼2-fold against enterococcal and lactococcal strains, respectively. Changing residues in the C-terminal half/part of the Lcn peptides (residues 20 to 39 and 25 to 35 in Lcn-α and Lcn-β, respectively) to those found in the corresponding Ent peptides did not have a marked effect on the activity, but there was an ∼10-fold or greater reduction in the activity upon also introducing Lcn-to-Ent mutations in the mid-region (residues 8 to 19 and 9 to 24 in Lcn-α and Lcn-β, respectively). Interestingly, the Lcn-to-Ent F19L+G20A mutation in an Lcn-Ent-β hybrid peptide was more detrimental when the altered peptide was combined with Lcn-α (>10-fold reduction) than when it was combined with Ent-α (∼2-fold reduction), suggesting that residues 19 and 20 (which are part of a GXXXG motif) in the β peptide may be involved in a specific interaction with the cognate α peptide. It is also noteworthy that the K2P and A7P mutations in Lcn-β reduced the activity only ∼2-fold, suggesting that the first seven residues in the β peptides do not form an α-helix.


2017 ◽  
Vol 49 (12) ◽  
pp. 1099-1111 ◽  
Author(s):  
Yuyu Chen ◽  
Kaimin Lu ◽  
Jianzong Li ◽  
Danfeng Liang ◽  
Hao luo ◽  
...  

2016 ◽  
Vol 82 (17) ◽  
pp. 5364-5374 ◽  
Author(s):  
Marija Miljkovic ◽  
Gordana Uzelac ◽  
Nemanja Mirkovic ◽  
Giulia Devescovi ◽  
Dzung B. Diep ◽  
...  

ABSTRACTThe Zn-dependent membrane-located protease YvjB has previously been shown to serve as a target receptor for LsbB, a class II leaderless lactococcal bacteriocin. AlthoughyvjBis highly conserved in the genusLactococcus, the bacteriocin appears to be active only against the subspeciesL. lactissubsp.lactis. Comparative analysis of the YvjB proteins of a sensitive strain (YvjBMN) and a resistant strain (YvjBMG) showed that they differ from each other in 31 positions. In this study, we applied site-directed mutagenesis and performed directed binding studies to provide biochemical evidence that LsbB interacts with the third transmembrane helix of YvjB in susceptible cells. The site-directed mutagenesis of LsbB and YvjB proteins showed that certain amino acids and the length of LsbB are responsible for the bacteriocin activity, most probably through adequate interaction of these two proteins; the essential amino acids in LsbB responsible for the activity are tryptophan (Trp25) and terminal alanine (Ala30). It was also shown that the distance between Trp25and terminal alanine is crucial for LsbB activity. The crucial region in YvjB for the interaction with LsbB is the beginning of the third transmembrane helix, particularly amino acids tyrosine (Tyr356) and alanine (Ala353).In vitroexperiments showed that LsbB could interact with both YvjBMNand YvjBMG, but the strength of interaction is significantly less with YvjBMG.In vivoexperiments with immunofluorescently labeled antibody demonstrated that LsbB specifically interacts only with cells carrying YvjBMN.IMPORTANCEThe antimicrobial activity of LsbB bacteriocin depends on the correct interaction with the corresponding receptor in the bacterial membrane of sensitive cells. Membrane-located bacteriocin receptors have essential primary functions, such as cell wall synthesis or sugar transport, and it seems that interaction with bacteriocins is suicidal for cells. This study showed that the C-terminal part of LsbB is crucial for the bacteriocin activity, most probably through adequate interaction with the third transmembrane domain of the YvjB receptor. The conserved Tyr356and Ala353residues of YvjB are essential for the function of this Zn-dependent membrane-located protease as a bacteriocin receptor.


Sign in / Sign up

Export Citation Format

Share Document