scholarly journals Formation and Function of the Rbl2p–β-Tubulin Complex

1998 ◽  
Vol 18 (3) ◽  
pp. 1757-1762 ◽  
Author(s):  
Julie E. Archer ◽  
Margaret Magendantz ◽  
Leticia R. Vega ◽  
Frank Solomon

ABSTRACT The yeast protein Rbl2p suppresses the deleterious effects of excess β-tubulin as efficiently as does α-tubulin. Both in vivo and in vitro, Rbl2p forms a complex with β-tubulin that does not contain α-tubulin, thus defining a second pool of β-tubulin in the cell. Formation of the complex depends upon the conformation of β-tubulin. Newly synthesized β-tubulin can bind to Rbl2p before it binds to α-tubulin. Rbl2p can also bind β-tubulin from the α/β-tubulin heterodimer, apparently by competing with α-tubulin. The Rbl2p–β-tubulin complex has a half-life of ∼2.5 h and is less stable than the α/β-tubulin heterodimer. The results of our experiments explain both how excess Rbl2p can rescue cells overexpressing β-tubulin and how it can be deleterious in a wild-type background. They also suggest that the Rbl2p–β-tubulin complex is part of a cellular mechanism for regulating the levels and dimerization of tubulin chains.

2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


2007 ◽  
Vol 98 (10) ◽  
pp. 806-812 ◽  
Author(s):  
Vandana Dole ◽  
Wolfgang Bergmeier ◽  
Ian Patten ◽  
Junichi Hirahashi ◽  
Tanya Mayadas ◽  
...  

SummaryWe have previously shown that activated platelets in circulation stimulate release of endothelial Weibel-Palade bodies thus increasing leukocyte rolling in venules. P-selectin on the activated platelets mediates adhesion to leukocytes via PSGL-1 and is rapidly shed into plasma. We were interested in studying the role of PSGL-1 in regulating expression and function of platelet P-selectin. We show here that PSGL-1 is critical for the activation of endothelial cells in venules of mice infused with activated platelets. The interaction of platelet P-selectin with PSGL-1 is also required for P-selectin shedding, as P-selectin was retained significantly longer on the surface of activated platelets infused into PSGL-1-/- compared to wild-type mice. The leukocyte integrin αMβ2 (Mac-1) was not required for P-selectin shedding. In addition to shedding, P-selectin can be downregulated from the platelet surface through internalization and this is the predominant mechanism in the absence of PSGL-1. We demonstrate that leukocyte- neutrophil elastase,known to cleave P-selectin in vitro, is not the major sheddase for P-selectin in vivo. In conclusion, interaction of platelet P-selectin with PSGL-1 is crucial for activation of the endothelium andWeibel-Palade body secretion. The interaction with PSGL-1 also results in rapid shedding of P-selectin thus downregulating the inflammatory potential of the platelet.


2020 ◽  
Vol 202 (23) ◽  
Author(s):  
Anastasiia N. Klimova ◽  
Steven J. Sandler

ABSTRACT Escherichia coli PriA and PriC recognize abandoned replication forks and direct reloading of the DnaB replicative helicase onto the lagging-strand template coated with single-stranded DNA-binding protein (SSB). Both PriA and PriC have been shown by biochemical and structural studies to physically interact with the C terminus of SSB. In vitro, these interactions trigger remodeling of the SSB on ssDNA. priA341(R697A) and priC351(R155A) negated the SSB remodeling reaction in vitro. Plasmid-carried priC351(R155A) did not complement priC303::kan, and priA341(R697A) has not yet been tested for complementation. Here, we further studied the SSB-binding pockets of PriA and PriC by placing priA341(R697A), priA344(R697E), priA345(Q701E), and priC351(R155A) on the chromosome and characterizing the mutant strains. All three priA mutants behaved like the wild type. In a ΔpriB strain, the mutations caused modest increases in SOS expression, cell size, and defects in nucleoid partitioning (Par−). Overproduction of SSB partially suppressed these phenotypes for priA341(R697A) and priA344(R697E). The priC351(R155A) mutant behaved as expected: there was no phenotype in a single mutant, and there were severe growth defects when this mutation was combined with ΔpriB. Analysis of the priBC mutant revealed two populations of cells: those with wild-type phenotypes and those that were extremely filamentous and Par− and had high SOS expression. We conclude that in vivo, priC351(R155A) identified an essential residue and function for PriC, that PriA R697 and Q701 are important only in the absence of PriB, and that this region of the protein may have a complicated relationship with SSB. IMPORTANCE Escherichia coli PriA and PriC recruit the replication machinery to a collapsed replication fork after it is repaired and needs to be restarted. In vitro studies suggest that the C terminus of SSB interacts with certain residues in PriA and PriC to recruit those proteins to the repaired fork, where they help remodel it for restart. Here, we placed those mutations on the chromosome and tested the effect of mutating these residues in vivo. The priC mutation completely abolished function. The priA mutations had no effect by themselves. They did, however, display modest phenotypes in a priB-null strain. These phenotypes were partially suppressed by SSB overproduction. These studies give us further insight into the reactions needed for replication restart.


2007 ◽  
Vol 18 (5) ◽  
pp. 1609-1620 ◽  
Author(s):  
Diana Caracino ◽  
Cheryl Jones ◽  
Mark Compton ◽  
Charles L. Saxe

Scar/WAVE proteins, members of the conserved Wiskott-Aldrich syndrome (WAS) family, promote actin polymerization by activating the Arp2/3 complex. A number of proteins, including a complex containing Nap1, PIR121, Abi1/2, and HSPC300, interact with Scar/WAVE, though the role of this complex in regulating Scar function remains unclear. Here we identify a short N-terminal region of Dictyostelium Scar that is necessary and sufficient for interaction with HSPC300 and Abi in vitro. Cells expressing Scar lacking this N-terminal region show abnormalities in F-actin distribution, cell morphology, movement, and cytokinesis. This is true even in the presence of wild-type Scar. The data suggest that the first 96 amino acids of Scar are necessary for participation in a large-molecular-weight protein complex, and that this Scar-containing complex is responsible for the proper localization and regulation of Scar. The presence of mis-regulated or unregulated Scar has significant deleterious effects on cells and may explain the need to keep Scar activity tightly controlled in vivo either by assembly in a complex or by rapid degradation.


1999 ◽  
Vol 19 (4) ◽  
pp. 3167-3176 ◽  
Author(s):  
Magali Kitzmann ◽  
Marie Vandromme ◽  
Valerie Schaeffer ◽  
Gilles Carnac ◽  
Jean-Claude Labbé ◽  
...  

ABSTRACT We have examined the role of protein phosphorylation in the modulation of the key muscle-specific transcription factor MyoD. We show that MyoD is highly phosphorylated in growing myoblasts and undergoes substantial dephosphorylation during differentiation. MyoD can be efficiently phosphorylated in vitro by either purified cdk1-cyclin B or cdk1 and cdk2 immunoprecipitated from proliferative myoblasts. Comparative two-dimensional tryptic phosphopeptide mapping combined with site-directed mutagenesis revealed that cdk1 and cdk2 phosphorylate MyoD on serine 200 in proliferative myoblasts. In addition, when the seven proline-directed sites in MyoD were individually mutated, only substitution of serine 200 to a nonphosphorylatable alanine (MyoD-Ala200) abolished the slower-migrating hyperphosphorylated form of MyoD, seen either in vitro after phosphorylation by cdk1-cyclin B or in vivo following overexpression in 10T1/2 cells. The MyoD-Ala200 mutant displayed activity threefold higher than that of wild-type MyoD in transactivation of an E-box-dependent reporter gene and promoted markedly enhanced myogenic conversion and fusion of 10T1/2 fibroblasts into muscle cells. In addition, the half-life of MyoD-Ala200 protein was longer than that of wild-type MyoD, substantiating a role of Ser200 phosphorylation in regulating MyoD turnover in proliferative myoblasts. Taken together, our data show that direct phosphorylation of MyoD Ser200 by cdk1 and cdk2 plays an integral role in compromising MyoD activity during myoblast proliferation.


Endocrinology ◽  
2012 ◽  
Vol 153 (2) ◽  
pp. 954-960 ◽  
Author(s):  
Naiel Azzam ◽  
Rinat Bar-Shalom ◽  
Fuad Fares

TSH is a dimeric glycoprotein hormone composed of a common α-subunit noncovalently linked to a hormone-specific β-subunit. Previously, the TSH heterodimer was successfully converted to an active single-chain hormone by genetically fusing α and β genes with [TSHβ- carboxyl-terminal peptide (CTP)-α] or without (TSHβ-α) the CTP of human chorionic gonadotropin β-subunit as a linker. In the present study, TSH variants were expressed in Chinese hamster ovarian cells. The results indicated that TSHβ-α single chain has the highest binding affinity to TSH receptor and the highest in vitro bioactivity. With regard to the in vivo bioactivity, all TSH variants increased the levels of T4 in circulation after 2 and 4 h of treatment. However, the level of T4 after treatment with TSH-wild type was significantly decreased after 6 and 8 h, compared with the levels after treatment with the other TSH variants. TSHβ-α and TSHβ-CTP-α single chains exhibited almost the same bioactivity after 8 h of treatment. Evaluating the half-life of TSH variants, TSHβ-CTP-α single chain revealed the longest half-life in circulation, whereas TSH-wild type exhibited the shortest serum half-life. These findings indicate that TSH single-chain variants with or without CTP as a linker may display conformational structures that increase binding affinity and serum half-life, thereby, suggesting novel attitudes for engineering and constructing superagonists of TSH, which may be used for treating different conditions of defected thyroid gland activity. Other prominent potential clinical use of these variants is in a diagnostic test for metastasis and recurrence of thyroid cancer.


2007 ◽  
Vol 28 (3) ◽  
pp. 1068-1080 ◽  
Author(s):  
Anthony J. Apicelli ◽  
Leonard B. Maggi ◽  
Angela C. Hirbe ◽  
Alexander P. Miceli ◽  
Mary E. Olanich ◽  
...  

ABSTRACT The nucleolus is the center of ribosome synthesis, with the nucleophosmin (NPM) and p19ARF proteins antagonizing one another to either promote or inhibit growth. However, basal NPM and ARF proteins form nucleolar complexes whose functions remain unknown. Nucleoli from Arf −/ − cells displayed increased nucleolar area, suggesting that basal ARF might regulate key nucleolar functions. Concordantly, ribosome biogenesis and protein synthesis were dramatically elevated in the absence of Arf, causing these cells to exhibit tremendous gains in protein amounts and increases in cell volume. The transcription of ribosomal DNA (rDNA), the processing of nascent rRNA molecules, and the nuclear export of ribosomes were all increased in the absence of ARF. Similar results were obtained using targeted lentiviral RNA interference of ARF in wild-type MEFs. Postmitotic osteoclasts from Arf-null mice exhibited hyperactivity in vitro and in vivo, demonstrating a physiological function for basal ARF. Moreover, the knockdown of NPM blocked the increases in Arf −/− ribosome output and osteoclast activity, demonstrating that these gains require NPM. Thus, basal ARF proteins act as a monitor of steady-state ribosome biogenesis and growth independent of their ability to prevent unwarranted hyperproliferation.


2021 ◽  
Vol 12 ◽  
Author(s):  
David Hongo ◽  
Pingping Zheng ◽  
Suparna Dutt ◽  
Rahul Pawar ◽  
Everett Meyer ◽  
...  

Classical dendritic cells (cDCs) in mice have been divided into 2 major subsets based on the expression of nuclear transcription factors: a CD8+Irf8+Batf3 dependent (DC1) subset, and a CD8-Irf4+ (DC2) subset. We found that the CD8+DC1 subset can be further divided into CD8+DC1a and CD8+DC1b subsets by differences in surface receptors, gene expression, and function. Whereas all 3 DC subsets can act alone to induce potent Th1 cytokine responses to class I and II MHC restricted peptides derived from ovalbumin (OVA) by OT-I and OT-II transgenic T cells, only the DC1b subset could effectively present glycolipid antigens to natural killer T (NKT) cells. Vaccination with OVA protein pulsed DC1b and DC2 cells were more effective in reducing the growth of the B16-OVA melanoma as compared to pulsed DC1a cells in wild type mice. In conclusion, the Batf3-/- dependent DC1 cells can be further divided into two subsets with different immune functional profiles in vitro and in vivo.


1999 ◽  
Vol 190 (5) ◽  
pp. 629-638 ◽  
Author(s):  
Qiang Wu ◽  
Yang Wang ◽  
Jing Wang ◽  
Elizabeth O. Hedgeman ◽  
Jeffrey L. Browning ◽  
...  

Although several cytokines, including tumor necrosis factor (TNF), can promote the growth of dendritic cells (DCs) in vitro, the cytokines that naturally regulate DC development and function in vivo have not been well defined. Here, we report that membrane lymphotoxin (LT), instead of TNF, regulates the migration of DCs in the spleen. LTα−/− mice, lacking membrane LTα/β and LTα3, show markedly reduced numbers of DCs in the spleen. Unlike wild-type mice and TNF−/− mice that have densely clustered DCs in the T cell zone and around the marginal zone, splenic DCs in LTα−/− mice are randomly distributed. The reduced number of DCs in lymphoid tissues of LTα−/− mice is associated with an increased number of DCs in nonlymphoid tissues. The number of splenic DCs in LTα−/− mice is restored when additional LT-expressing cells are provided. Blocking membrane LTα/β in wild-type mice markedly diminishes the accumulation of DCs in lymphoid tissues. These data suggest that membrane LT is an essential ligand for the presence of DCs in the spleen. Mice deficient in TNF receptor, which is the receptor for both soluble LTα3 and TNF-α3 trimers, have normal numbers of DCs. However, LTβR−/− mice show reduced numbers of DCs, similar to the mice lacking membrane LT α/β. Taken together, these results support the notion that the signaling via LTβR by membrane LTα/β is required for the presence of DCs in lymphoid tissues.


2008 ◽  
Vol 99 (04) ◽  
pp. 659-667 ◽  
Author(s):  
Thomas Weimer ◽  
Wilfried Wormsbächer ◽  
Ulrich Kronthaler ◽  
Wiegand Lang ◽  
Uwe Liebing ◽  
...  

SummaryFor the treatment of haemophilia patients with inhibitors, recombinant factor VIIa (rFVIIa) is available as a therapeutic option to control bleeding episodes with a good balance of safety and efficacy. However, the short in-vivo half-life of approximately 2.5 hours makes multiple injections necessary, which is inconvenient for both physicians and patients. Here we describe the generation of a recombinant FVIIa molecule with an extended half-life based on genetic fusion to human albumin. The recombinant FVII albumin fusion protein (rVII-FP) was expressed in mammalian cells and upon activation displayed a FVII activity close to that of wild type FVIIa. Pharmacokinetic studies in rats demonstrated that the half-life of the activated recombinant FVII albumin fusion protein (rVIIa-FP) was extended six- to sevenfold compared with wild type rFVIIa. The in-vitro and in-vivo efficacy was evaluated and was found to be comparable to a commercially available rFVIIa (NovoSeven®). The results of this study demonstrate that it is feasible to develop a half-life extended FVIIa molecule with haemostatic properties very similar to the wild-type factor.


Sign in / Sign up

Export Citation Format

Share Document