scholarly journals Functional Analysis of Coordinated Cleavage in V(D)J Recombination

1998 ◽  
Vol 18 (8) ◽  
pp. 4679-4688 ◽  
Author(s):  
Deok Ryong Kim ◽  
Marjorie A. Oettinger

ABSTRACT V(D)J recombination in vivo requires a pair of signals with distinct spacer elements of 12 and 23 bp that separate conserved heptamer and nonamer motifs. Cleavage in vitro by the RAG1 and RAG2 proteins can occur at individual signals when the reaction buffer contains Mn2+, but cleavage is restricted to substrates containing two signals when Mg2+ is the divalent cation. By using a novel V(D)J cleavage substrate, we show that while the RAG proteins alone establish a moderate preference for a 12/23 pair versus a 12/12 pair, a much stricter dependence of cleavage on the 12/23 signal pair is produced by the inclusion of HMG1 and competitor double-stranded DNA. The competitor DNA serves to inhibit the cleavage of substrates carrying a 12/12 or 23/23 pair, as well as the cutting at individual signals in 12/23 substrates. We show that a 23/33 pair is more efficiently recombined than a 12/33 pair, suggesting that the 12/23 rule can be generalized to a requirement for spacers that differ from each other by a single helical turn. Furthermore, we suggest that a fixed spatial orientation of signals is required for cleavage. In general, the same signal variants that can be cleaved singly can function under conditions in which a signal pair is required. However, a chemically modified substrate with one noncleavable signal enables us to show that formation of a functional cleavage complex is mechanistically separable from the cleavage reaction itself and that although cleavage requires a pair of signals, cutting does not have to occur simultaneously at both. The implications of these results are discussed with respect to the mechanism of V(D)J recombination and the generation of chromosomal translocations.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


2001 ◽  
Vol 114 (24) ◽  
pp. 4575-4585 ◽  
Author(s):  
Tokuko Haraguchi ◽  
Takako Koujin ◽  
Miriam Segura-Totten ◽  
Kenneth K. Lee ◽  
Yosuke Matsuoka ◽  
...  

Mutations in emerin cause the X-linked recessive form of Emery-Dreifuss muscular dystrophy (EDMD). Emerin localizes at the inner membrane of the nuclear envelope (NE) during interphase, and diffuses into the ER when the NE disassembles during mitosis. We analyzed the recruitment of wildtype and mutant GFP-tagged emerin proteins during nuclear envelope assembly in living HeLa cells. During telophase, emerin accumulates briefly at the ‘core’ region of telophase chromosomes, and later distributes over the entire nuclear rim. Barrier-to-autointegration factor (BAF), a protein that binds nonspecifically to double-stranded DNA in vitro, co-localized with emerin at the ‘core’ region of chromosomes during telophase. An emerin mutant defective for binding to BAF in vitro failed to localize at the ‘core’ in vivo, and subsequently failed to localize at the reformed NE. In HeLa cells that expressed BAF mutant G25E, which did not show ‘core’ localization, the endogenous emerin proteins failed to localize at the ‘core’ region during telophase, and did not assemble into the NE during the subsequent interphase. BAF mutant G25E also dominantly dislocalized LAP2β and lamin A from the NE, but had no effect on the localization of lamin B. We conclude that BAF is required for the assembly of emerin and A-type lamins at the reforming NE during telophase, and may mediate their stability in the subsequent interphase.


2013 ◽  
Vol 21 (6) ◽  
pp. 1204-1211 ◽  
Author(s):  
Shunsuke Noguchi ◽  
Junya Iwasaki ◽  
Minami Kumazaki ◽  
Takashi Mori ◽  
Kohji Maruo ◽  
...  

2006 ◽  
Vol 28 (1-2) ◽  
pp. 31-35
Author(s):  
Achim Weber ◽  
Marina I. Gutierrez ◽  
David Levens

Background: Chromosomal translocations are causally related to the development of many tumors. In Burkitt's lymphoma, abnormalities involving the c-myc gene are essential. The CT-element of the c-myc promoter adopts non-B-conformation in vivo and in vitro, and therefore provides a potential fragile site. Methods: We have developed a LM-PCR-based approach to test if chromosomal breakpoints indeed cluster in this region. Results: Amplifying both, wild-type as well as the translocated c-myc gene by LM-PCR, it was shown that chromosomal breakpoints did not cluster within the CT-element. Conclusions: Therefore, the CT-element is not especially susceptible to the formation of breakpoints leading to chromosomal translocations in Burkitt's lymphoma.


2020 ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated protein complexes, like shelterin in mammals, which protect telomeres from DNA damage. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to screen for proteins binding to C. elegans telomeres, and identified TEBP-1 and TEBP-2, two paralogs that associate to telomeres in vitro and in vivo. TEBP-1 and TEBP-2 are expressed in the germline and during embryogenesis. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a mortal germline, a phenotype characterized by transgenerational germline deterioration. Notably, tebp-1; tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. TEBP-1 and TEBP-2 form a telomeric complex with the known single-stranded telomere-binding proteins POT-1, POT-2, and MRT-1. Furthermore, we find that POT-1 bridges the double- stranded binders TEBP-1 and TEBP-2, with the single-stranded binders POT-2 and MRT-1. These results describe the first telomere-binding complex in C. elegans, with TEBP-1 and TEBP-2, two double-stranded telomere binders required for fertility and that mediate opposite telomere dynamics.


Blood ◽  
1974 ◽  
Vol 43 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Arlan J. Gottlieb ◽  
Harold A. Wurzel

Abstract Methyldopa-treated gamma globulin can be demonstrated serologically on either the red cell surface or on latex beads by the indirect antiglobulin reaction. The development of a positive antiglobulin reaction was related to methyldopa concentration and the length and temperature of incubation of methyldopa with protein and could be partially inhibited by the addition of albumin to the incubation mixtures. After more prolonged incubation, antiglobulin positivity also developed with plasma-treated with methyldopa. 14C-methyldopa was covalently bound to gamma globulin. Aggregation of gamma globulin following treatment with methyldopa could be demonstrated by both sedimentation velocity and molecular weight determinations employing low-speed equilibrium centrifugation. Protein aggregation was a function of time, temperature, and methyldopa concentration. Detectability by the antiglobulin reaction, the darkening noted in solutions to which methyldopa or hydroquinone had been added, as well as the aggregation of protein was inhibited by a reducing agent which prevented formation of a quinone from the hydroquinone. Some of the immunologically atypical features of the sensitization of red cells by methyldopa or its structural analogues are explicable by the adherence, in vivo, of chemically modified, nonantibody gamma globulin which renders the red cell directly antiglobulin positive.


2001 ◽  
Vol 41 (supplement) ◽  
pp. S28
Author(s):  
H. Tadakuma ◽  
T. Funatsu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document